메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages

On adaptive sampling for single and multi-response Bayesian surrogate models

Author keywords

Adaptive sampling; Cross validation; Latin hypercubes; Maximum entropy sampling; Metamodels; Sequential sampling; Surrogate models

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; COMPUTER SIMULATION; DATA REDUCTION; MATHEMATICAL MODELS;

EID: 33751341849     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1115/detc2006-99210     Document Type: Conference Paper
Times cited : (19)

References (34)
  • 2
    • 0011025114 scopus 로고    scopus 로고
    • Efficient pareto frontier exploration using surrogate approximations
    • Wilson, B., et al., Efficient Pareto Frontier Exploration using Surrogate Approximations. Optimization and Engineering, 2001. 2: p. 31-50.
    • (2001) Optimization and Engineering , vol.2 , pp. 31-50
    • Wilson, B.1
  • 3
    • 0031212567 scopus 로고    scopus 로고
    • A closer look at the drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems
    • Das, I. and J.E. Dennis, A Closer Look at the Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural Optimization, 1997.14: p. 63-69.
    • (1997) Structural Optimization , vol.14 , pp. 63-69
    • Das, I.1    Dennis, J.E.2
  • 5
    • 0034933620 scopus 로고    scopus 로고
    • Metamodels for computer-based engineering design: Survey and recommendations
    • Simpson, T.W., et al., Metamodels for Computer-Based Engineering Design: Survey and Recommendations. Engineering with Computers, 2001. 17: p. 129-150.
    • (2001) Engineering with Computers , vol.17 , pp. 129-150
    • Simpson, T.W.1
  • 6
    • 0035659213 scopus 로고    scopus 로고
    • Kriging models for global approximation in simulation-based multidisciplinary design optimization
    • Simpson, T.W., et al., Kriging Models for Global Approximation in Simulation-based Multidisciplinary Design Optimization. AIAA Journal, 2001. 39(12): p. 2233-2241.
    • (2001) AIAA Journal , vol.39 , Issue.12 , pp. 2233-2241
    • Simpson, T.W.1
  • 7
    • 0042470612 scopus 로고    scopus 로고
    • The use of metamodeling techniques for optimization under uncertainty
    • Jin, R., X. Du, and W. Chen, The Use of Metamodeling Techniques for Optimization under Uncertainty. Structural and Multidisciplinary Optimization, 2003. 25: p. 99-116.
    • (2003) Structural and Multidisciplinary Optimization , vol.25 , pp. 99-116
    • Jin, R.1    Du, X.2    Chen, W.3
  • 8
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • McKay, M.D., R.J. Beckman, and W.J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 1979. 21(2): p. 239-245.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 9
    • 0000444881 scopus 로고
    • Orthogonal arrays for computer experiments, integration and visualization
    • Owen, A.B., Orthogonal Arrays for Computer Experiments, Integration and Visualization. Statistica Sinica, 1992. 2: p. 439-452.
    • (1992) Statistica Sinica , vol.2 , pp. 439-452
    • Owen, A.B.1
  • 11
    • 0042205035 scopus 로고    scopus 로고
    • On sampling designs for integral estimation of a random process
    • Mukherjee, B., On Sampling Designs for Integral Estimation of a Random Process. Communications in Statistics, 2003. 32(8): p. 1647-1663.
    • (2003) Communications in Statistics , vol.32 , Issue.8 , pp. 1647-1663
    • Mukherjee, B.1
  • 12
    • 0013018111 scopus 로고    scopus 로고
    • Maximin orthogonal arrays for large-scale computational experiments
    • Submitted to, Institute for Complex Engineered Systems, Carnegie Mellon University: Pittsburgh, USA
    • Osio, I.G., and Amon, C. H., Maximin Orthogonal Arrays for Large-Scale Computational Experiments, in Submitted to Journal of Statistical Planning and Inference. 1998, Institute for Complex Engineered Systems, Carnegie Mellon University: Pittsburgh, USA.
    • (1998) Journal of Statistical Planning and Inference
    • Osio, I.G.1    Amon, C.H.2
  • 13
    • 85086451138 scopus 로고    scopus 로고
    • On sequential sampling for global metamodeling in engineering design
    • Montreal, Canada: American Society of Mechanical Engineers (ASME)
    • Jin, R., W. Chen, and A. Sudjianto. On Sequential Sampling for Global Metamodeling in Engineering Design. in ASME 2002 International Design Engineering Technical Conferences. 2002. Montreal, Canada: American Society of Mechanical Engineers (ASME).
    • (2002) ASME 2002 International Design Engineering Technical Conferences
    • Jin, R.1    Chen, W.2    Sudjianto, A.3
  • 14
    • 14044260694 scopus 로고    scopus 로고
    • An efficient pareto set identification approach for multi-objective optimization on black-box functions
    • Salt Lake City, Utah, USA: ASME
    • Wang, G.G. and S. Shan. An Efficient Pareto Set Identification Approach for Multi-Objective Optimization on Black-Box Functions, in ASME Design Engineering Technical Conferences, Paper No. DETC2004-57194. 2004. Salt Lake City, Utah, USA: ASME.
    • (2004) ASME Design Engineering Technical Conferences, Paper No. DETC2004-57194
    • Wang, G.G.1    Shan, S.2
  • 15
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • Jones, D.R., M. Schonlau, and W.J. Welch, Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization, 1998. 13: p. 455-492.
    • (1998) Journal of Global Optimization , vol.13 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 18
    • 0036588666 scopus 로고    scopus 로고
    • Exploration ofmetamodeling sampling criteria for constrained global optimization
    • Sasena, M., P. Papalambros, and P. Goovaerts, Exploration ofMetamodeling Sampling Criteria for Constrained Global Optimization. Engineering Optimization, 2002. 34: p. 263-278.
    • (2002) Engineering Optimization , vol.34 , pp. 263-278
    • Sasena, M.1    Papalambros, P.2    Goovaerts, P.3
  • 19
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • Chaloner, K. and I. Verdinelli, Bayesian Experimental Design: A Review. Statistical Science, 1995. 10(3): p. 273-304.
    • (1995) Statistical Science , vol.10 , Issue.3 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 20
    • 14044276405 scopus 로고    scopus 로고
    • A sequential exploratory experimental design method: Development of appropriate empirical models in design
    • Salt Lake City, Utah, USA: ASME
    • Lin, Y., et al. A Sequential Exploratory Experimental Design Method: Development of Appropriate Empirical Models in Design, in ASME Design Engineering Technical Conferences, Paper No. DETC2004-57527. 2004. Salt Lake City, Utah, USA: ASME.
    • (2004) ASME Design Engineering Technical Conferences, Paper No. DETC2004-57527
    • Lin, Y.1
  • 21
  • 22
    • 29644431719 scopus 로고    scopus 로고
    • Multi-stage, multi-response Bayesian surrogate models for engineering design
    • submitted to the Transactions of the ASME
    • Romero, D., C.H. Amon, and S. Finger, Multi-Stage, Multi-Response Bayesian Surrogate Models for Engineering Design, submitted to the Transactions of the ASME, Journal of Mechanical Design, 2004.
    • (2004) Journal of Mechanical Design
    • Romero, D.1    Amon, C.H.2    Finger, S.3
  • 23
    • 0031473268 scopus 로고    scopus 로고
    • Six factors which affect the condition number of matrices associated with kriging
    • Davis, G.J. and M.D. Morris, Six Factors Which Affect the Condition Number of Matrices Associated with Kriging. Mathematical Geology, 1997. 29(5): p. 669-683.
    • (1997) Mathematical Geology , vol.29 , Issue.5 , pp. 669-683
    • Davis, G.J.1    Morris, M.D.2
  • 24
    • 0032456527 scopus 로고    scopus 로고
    • Calculation of the inverse of the covariance
    • Oliver, D.S., Calculation of the Inverse of the Covariance. Mathematical Geology, 1998. 30(7): p. 911-933.
    • (1998) Mathematical Geology , vol.30 , Issue.7 , pp. 911-933
    • Oliver, D.S.1
  • 25
    • 84972517827 scopus 로고
    • Design and analysis of computer experiments
    • Sacks, J., et al., Design and Analysis of Computer Experiments. Statistical Science, 1989. 4(4): p. 409-435.
    • (1989) Statistical Science , vol.4 , Issue.4 , pp. 409-435
    • Sacks, J.1
  • 26
    • 0027387626 scopus 로고
    • Multivariable spatial prediction
    • Ver Hoef, J.M. and N. Cressie, Multivariable Spatial Prediction. Mathematical Geology, 1993. 25(2): p. 219-240.
    • (1993) Mathematical Geology , vol.25 , Issue.2 , pp. 219-240
    • Ver Hoef, J.M.1    Cressie, N.2
  • 27
    • 0003675176 scopus 로고
    • Applied multivariate statistical analysis
    • 2nd Edition ed., Englewood Cliffs, NJ, USA.: Prentice Hall
    • Johnson, R.A. and D.W. Wichern, Applied Multivariate Statistical Analysis. 2nd Edition ed. Prentice Hall Series in Statistics. 1988, Englewood Cliffs, NJ, USA.: Prentice Hall. 607.
    • (1988) Prentice Hall Series in Statistics , pp. 607
    • Johnson, R.A.1    Wichern, D.W.2
  • 29
    • 0032465020 scopus 로고    scopus 로고
    • The variance-based cross-variogram: You can add apples and oranges
    • Cressie, N. and C.K. Wikle, The Variance-Based Cross-Variogram: You Can Add Apples and Oranges. Mathematical Geology, 1998. 30(7): p. 789-799.
    • (1998) Mathematical Geology , vol.30 , Issue.7 , pp. 789-799
    • Cressie, N.1    Wikle, C.K.2
  • 30
    • 0030397412 scopus 로고    scopus 로고
    • An engineering design methodology with multistage Bayesian surrogates and optimal sampling
    • Osio, I.G and C.H. Amon, An Engineering Design Methodology with Multistage Bayesian Surrogates and Optimal Sampling. Research in Engineering Design, 1996. 8: p. 189-206.
    • (1996) Research in Engineering Design , vol.8 , pp. 189-206
    • Osio, I.G.1    Amon, C.H.2
  • 32
    • 0013023731 scopus 로고    scopus 로고
    • Multistage Bayesian surrogates and optimal sampling for engineering design and process improvement
    • Ph.D. Thesis, Dept. of Mechanical Engineering, Carnegie Mellon University: Pittsburgh, PA
    • Osio, I.G., Multistage Bayesian Surrogates and Optimal Sampling for Engineering Design and Process Improvement, in Mechanical Engineering. 1996, Ph.D. Thesis, Dept. of Mechanical Engineering, Carnegie Mellon University: Pittsburgh, PA. p. 114.
    • (1996) Mechanical Engineering , pp. 114
    • Osio, I.G.1
  • 33
    • 1042269711 scopus 로고    scopus 로고
    • Bayesian surrogates applied to conceptual stages of the engineering design process
    • Transactions of the ASME
    • Pacheco, J.E., C.H. Amon, and S. Finger, Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process. Journal Of Mechanical Design, Transactions of the ASME, 2003.125: p. 664-672.
    • (2003) Journal of Mechanical Design , vol.125 , pp. 664-672
    • Pacheco, J.E.1    Amon, C.H.2    Finger, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.