-
1
-
-
26944467682
-
Developing tightly coupled data mining applications on a relational database system
-
Agrawal R., and Shim K. Developing tightly coupled data mining applications on a relational database system. KDD-96 (1996)
-
(1996)
KDD-96
-
-
Agrawal, R.1
Shim, K.2
-
3
-
-
33751245023
-
-
H. Blockeel, M. Sebag, Scalability and efficiency in multi-relational data mining, ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations Special Issue on Multi-Relational Data Mining, 5 (1) (2003).
-
-
-
-
5
-
-
33751242213
-
-
J. Cheng, M. Krogel, J. Sese, C. Hatsiz, S. Morishita, H. Hayashi, D. Page, KDD Cup 2001 Report, ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations, 3 (2) (2002).
-
-
-
-
6
-
-
34249966007
-
The CN2 induction algorithm
-
Clark P., and Niblett T. The CN2 induction algorithm. Machine Learning 3 (1989) 261-283
-
(1989)
Machine Learning
, vol.3
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
8
-
-
84957890121
-
Mining association rules with multiple relations
-
Proceedings of the 7th International Workshop on Inductive Logic Programming, Springer-Verlag
-
Dehaspe L., and De Readt L. Mining association rules with multiple relations. Proceedings of the 7th International Workshop on Inductive Logic Programming. Lecture Notes in Artificial Intelligence vol. 1297 (1997), Springer-Verlag 125-132
-
(1997)
Lecture Notes in Artificial Intelligence
, vol.1297
, pp. 125-132
-
-
Dehaspe, L.1
De Readt, L.2
-
9
-
-
33947709517
-
Discovery of relational association rules
-
Dzeroski S., and Lavrac N. (Eds), Springer-Verlag
-
Dehaspe L., and Toivonen H. Discovery of relational association rules. In: Dzeroski S., and Lavrac N. (Eds). Relational Data Mining (2001), Springer-Verlag 189-212
-
(2001)
Relational Data Mining
, pp. 189-212
-
-
Dehaspe, L.1
Toivonen, H.2
-
10
-
-
33751223451
-
-
P. Domingos, Prospects and challenges for multi-relational data mining, SIGKDD Explorations, Special Issue on Multi-Relational Data Mining, 5 (1) (2003).
-
-
-
-
11
-
-
0030044168
-
Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
-
King R.D., Muggleton S.H., Srinivasan A., and Sternberg M.J.E. Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proceedings of National Academy of Science, United States of America, 9 93 1 (1996) 438-442
-
(1996)
Proceedings of National Academy of Science, United States of America, 9
, vol.93
, Issue.1
, pp. 438-442
-
-
King, R.D.1
Muggleton, S.H.2
Srinivasan, A.3
Sternberg, M.J.E.4
-
14
-
-
2942664743
-
-
A. Netz, S. Chaudhuri, U. Fayyad, Integration of data mining and relational databases, Proceedings of the 26th International Conference on Very Large Databases, Cairo, Egypt (2000).
-
-
-
-
15
-
-
33751208813
-
-
J. Neville, D. Jensen, Supporting relational knowledge discovery: lessons in architecture and algorithm design, Proceedings of the Data Mining Lessons Learned Workshop, 19th International Conference on Machine Learning (2002).
-
-
-
-
16
-
-
0001326825
-
Scaling up inductive algorithms: an overview
-
Provost F., and Kolluri V. Scaling up inductive algorithms: an overview. KDD-97 (1997)
-
(1997)
KDD-97
-
-
Provost, F.1
Kolluri, V.2
-
19
-
-
0142184021
-
A multi-relational rule discovery system
-
Proceedings of 18th International Symposium on Computer and Information Sciences, Springer-Verlag
-
Uludag M., Tolun M.R., and Etzold T. A multi-relational rule discovery system. Proceedings of 18th International Symposium on Computer and Information Sciences. Lecture Notes in Computer Science vol. 2869 (2003), Springer-Verlag 252-259
-
(2003)
Lecture Notes in Computer Science
, vol.2869
, pp. 252-259
-
-
Uludag, M.1
Tolun, M.R.2
Etzold, T.3
|