-
2
-
-
0003533718
-
-
(Prentice Hall, Englewood Cliffs, NJ), Chap. 1
-
See, for instance, M. P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, NJ, 1976), Chap. 1.
-
(1976)
Differential Geometry of Curves and Surfaces
-
-
Do Carmo, M.P.1
-
3
-
-
0009520937
-
Null curves in a Minkowski spacetime
-
The reader interested in the geometry of null curves is referred to W. B. Bonnor, "Null curves in a Minkowski spacetime," Tensor 20, 229-242 (1969);
-
(1969)
Tensor
, vol.20
, pp. 229-242
-
-
Bonnor, W.B.1
-
4
-
-
33646742105
-
An action principle for photons
-
London
-
J. L. Synge, "An action principle for photons," Nature (London) 317, 675-675 (1985);
-
(1985)
Nature
, vol.317
, pp. 675-675
-
-
Synge, J.L.1
-
5
-
-
24644451529
-
Local differential geometry of null curves in conformally flat spacetime
-
H. Urbantke, "Local differential geometry of null curves in conformally flat spacetime," J. Math. Phys. 30, 2238-2245 (1989).
-
(1989)
J. Math. Phys.
, vol.30
, pp. 2238-2245
-
-
Urbantke, H.1
-
6
-
-
0004268344
-
-
(Dover, New York), Chap. 2
-
See, for example, J. L. Synge and A. Schild, Tensor Calculus (Dover, New York, 1978), Chap. 2.
-
(1978)
Tensor Calculus
-
-
Synge, J.L.1
Schild, A.2
-
8
-
-
33751217052
-
-
note
-
1, to be non-negative.
-
-
-
-
9
-
-
33751225262
-
-
note
-
The index lowered form of Σ is antisymmetric, which means that the original matrix lies in the Lie algebra of the Lorentz group.
-
-
-
-
10
-
-
33751228020
-
-
note
-
It is usual to consider a Poincaré transformation as a coordinate transformation in the passive sense. Here, we regard it in the active sense, that is, as motion in Minkowski spacetime.
-
-
-
-
11
-
-
33751256751
-
-
See, for instance, the appendix to Chap. 4 of Ref. 2
-
See, for instance, the appendix to Chap. 4 of Ref. 2.
-
-
-
-
12
-
-
33751226797
-
-
note
-
In developing the Serret-Frenet formalism in Minkowski spacetime we are ultimately interested in applications to the motion of physical particles. Therefore we shall restrict ourselves to time-like curves, although the formalism may also work for space-like curves. The consideration of null curves should introduce some difficulties.
-
-
-
-
13
-
-
33751202322
-
-
note
-
A matrix Λ is said to be a Lorentz matrix if it is pseudo-orthogonal, that is, if it satisfies the condition Λ′η Λ= η, where Λ′ is the transpose of Λ and η denotes the Minkowski metric. If det Λ=1. then Λ is called a proper Lorentz matrix.
-
-
-
-
14
-
-
33751243521
-
-
note
-
The Serret-Frenet equations describe a curve of Lorentz transformation matrices generated by the curve of Lorentz Lie algebra matrices, which describe how the Serret-Frenet frame changes with respect to a constant orthonormal frame.
-
-
-
-
15
-
-
33751242643
-
-
Addison-Wesley, Reading, MA
-
S. Lang, Analysis 1 (Addison-Wesley, Reading, MA, 1968), pp. 383-386.
-
(1968)
Analysis
, vol.1
, pp. 383-386
-
-
Lang, S.1
-
17
-
-
0000258008
-
Motion of a charge in a gravitational field
-
M. Carmeli, "Motion of a charge in a gravitational field," Phys. Rev. B 138, 1003-1007 (1965).
-
(1965)
Phys. Rev. B
, vol.138
, pp. 1003-1007
-
-
Carmeli, M.1
-
18
-
-
0012726041
-
Time-like helices in flat spacetime
-
J. L. Synge, "Time-like helices in flat spacetime," Proc. R. Ir. Acad., Sect. A 65, 27-41 (1967).
-
(1967)
Proc. R. Ir. Acad., Sect. A
, vol.65
, pp. 27-41
-
-
Synge, J.L.1
-
19
-
-
0000328186
-
Lorentz transformation and the motion of a charge in a constant electromagnetic field
-
E. Pina, "Lorentz transformation and the motion of a charge in a constant electromagnetic field," Rev. Mex. Fis. 16, 233-236 (1967).
-
(1967)
Rev. Mex. Fis.
, vol.16
, pp. 233-236
-
-
Pina, E.1
-
20
-
-
36849109072
-
Motion of charged particles in homogeneous electromagnetic fields
-
E. Honig, E. Schucking, and C. Vishveshwara, "Motion of charged particles in homogeneous electromagnetic fields," J. Math. Phys. 15, 774-781 (1974).
-
(1974)
J. Math. Phys.
, vol.15
, pp. 774-781
-
-
Honig, E.1
Schucking, E.2
Vishveshwara, C.3
-
21
-
-
0012674449
-
Intrinsic geometry of curves and the Minkowski force
-
H. Ringermacher, "Intrinsic geometry of curves and the Minkowski force," Phys. Lett. A 74, 381-383 (1979).
-
(1979)
Phys. Lett. A
, vol.74
, pp. 381-383
-
-
Ringermacher, H.1
-
22
-
-
0036665432
-
Intrinsic geometry of curves and the Lorentz equation
-
J. H. Caltenco, R. Linares, and J. L. López-Bonilla, "Intrinsic geometry of curves and the Lorentz equation," Czech. J. Phys. 52, 839-842 (2002).
-
(2002)
Czech. J. Phys.
, vol.52
, pp. 839-842
-
-
Caltenco, J.H.1
Linares, R.2
López-Bonilla, J.L.3
-
23
-
-
0003831091
-
-
(Addison-Wesley, Reading, MA), Chap. 3
-
See, for instance, L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Addison-Wesley, Reading, MA, 1962), Chap. 3.
-
(1962)
The Classical Theory of Fields
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
24
-
-
0004021160
-
-
Cambridge U.P., Cambridge
-
See, for instance, H. Stephani, General Relativity (Cambridge U.P., Cambridge, 1994), pp. 187-188.
-
(1994)
General Relativity
, pp. 187-188
-
-
Stephani, H.1
-
26
-
-
0040092427
-
Charged particle in a constant electromagnetic field: Covariant solution
-
G. Muñoz, "Charged particle in a constant electromagnetic field: Covariant solution," Am. J. Phys. 65, 429-433 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, pp. 429-433
-
-
Muñoz, G.1
-
27
-
-
33751213277
-
-
note
-
AB.
-
-
-
-
28
-
-
33751223087
-
-
note
-
1, as non-negative scalars (Ref. 18).
-
-
-
|