메뉴 건너뛰기




Volumn 66, Issue 3, 2007, Pages 591-603

Iterative approximation to common fixed points of nonexpansive mapping sequences in reflexive Banach spaces

Author keywords

A family of infinitely many nonexpansive maps; Uniformly asymptotically regular mapping sequence; Viscosity approximation methods; Weakly sequentially continuous duality mapping

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; CONFORMAL MAPPING; CONVERGENCE OF NUMERICAL METHODS; NONLINEAR EQUATIONS; STATE SPACE METHODS; VARIATIONAL TECHNIQUES;

EID: 33751186708     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.12.004     Document Type: Article
Times cited : (37)

References (18)
  • 1
    • 0030586523 scopus 로고    scopus 로고
    • The approximation of fixed points of nonexpansive mappings in Hilbert space
    • Bauschke H. The approximation of fixed points of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996) 150-159
    • (1996) J. Math. Anal. Appl. , vol.202 , pp. 150-159
    • Bauschke, H.1
  • 2
    • 0001621448 scopus 로고
    • Properties of fixed-point sets of nonexpansive mappings in Banach spaces
    • Bruck Jr. R.E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179 (1973) 251-262
    • (1973) Trans. Amer. Math. Soc. , vol.179 , pp. 251-262
    • Bruck Jr., R.E.1
  • 3
    • 51249180202 scopus 로고
    • A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces
    • Bruck R.E. A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Israel J. Math. 32 (1979) 107-116
    • (1979) Israel J. Math. , vol.32 , pp. 107-116
    • Bruck, R.E.1
  • 4
    • 33646983265 scopus 로고
    • On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces
    • Bruck R.E. On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces. Israel J. Math. 38 (1981) 304-314
    • (1981) Israel J. Math. , vol.38 , pp. 304-314
    • Bruck, R.E.1
  • 5
    • 84972584068 scopus 로고
    • Some geometric properties related to the fixed point theory for nonexpansive mappings
    • Gossez J.P., and Lami Dozo E. Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J. Math. 40 (1972) 565-573
    • (1972) Pacific J. Math. , vol.40 , pp. 565-573
    • Gossez, J.P.1    Lami Dozo, E.2
  • 6
    • 84894234564 scopus 로고
    • Fixed points of nonexpansive maps
    • Halpern B. Fixed points of nonexpansive maps. Bull. Amer. Math. Soc. 73 (1967) 957-961
    • (1967) Bull. Amer. Math. Soc. , vol.73 , pp. 957-961
    • Halpern, B.1
  • 7
    • 10644249739 scopus 로고    scopus 로고
    • Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces
    • Jung J.S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302 (2005) 509-520
    • (2005) J. Math. Anal. Appl. , vol.302 , pp. 509-520
    • Jung, J.S.1
  • 8
    • 4544256112 scopus 로고    scopus 로고
    • Viscosity approximation methods for nonexpansive mappings
    • Xu H.K. Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004) 279-291
    • (2004) J. Math. Anal. Appl. , vol.298 , pp. 279-291
    • Xu, H.K.1
  • 9
    • 0042128551 scopus 로고    scopus 로고
    • Iterative approaches to finding nearest common fixed point of nonexpansive mappings in Hilbert spaces
    • O'Hara J.G., Pillay P., and Xu H.-K. Iterative approaches to finding nearest common fixed point of nonexpansive mappings in Hilbert spaces. Nonlinear Anal. 54 (2003) 1417-1426
    • (2003) Nonlinear Anal. , vol.54 , pp. 1417-1426
    • O'Hara, J.G.1    Pillay, P.2    Xu, H.-K.3
  • 10
    • 33745998912 scopus 로고
    • Strong convergence theorems for resolvents of accretive operators in Banach spaces
    • Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980) 287-292
    • (1980) J. Math. Anal. Appl. , vol.75 , pp. 287-292
    • Reich, S.1
  • 11
    • 84968476130 scopus 로고
    • Approximation of fixed points of asymptotically nonexpansive mappings
    • Schu J. Approximation of fixed points of asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 112 (1991) 143-151
    • (1991) Proc. Amer. Math. Soc. , vol.112 , pp. 143-151
    • Schu, J.1
  • 12
    • 21944452074 scopus 로고    scopus 로고
    • Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces
    • Shioji N., and Takahashi W. Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Amer. Math. Soc. 125 (1997) 3641-3645
    • (1997) Proc. Amer. Math. Soc. , vol.125 , pp. 3641-3645
    • Shioji, N.1    Takahashi, W.2
  • 13
    • 0031172967 scopus 로고    scopus 로고
    • Strong convergence to common fixed points of families of nonexpansive mappings
    • Shimizu T., and Takahashi W. Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 211 (1997) 71-83
    • (1997) J. Math. Anal. Appl. , vol.211 , pp. 71-83
    • Shimizu, T.1    Takahashi, W.2
  • 15
    • 0001682125 scopus 로고
    • Approximation of fixed points of nonexpansive mappings
    • Wittmann R. Approximation of fixed points of nonexpansive mappings. Arch. Math. 59 (1992) 486-491
    • (1992) Arch. Math. , vol.59 , pp. 486-491
    • Wittmann, R.1
  • 16
    • 0037269525 scopus 로고    scopus 로고
    • An iterative approach to quadratic optimization
    • Xu H.K. An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116 (2003) 659-678
    • (2003) J. Optim. Theory Appl. , vol.116 , pp. 659-678
    • Xu, H.K.1
  • 17
    • 0000736340 scopus 로고
    • Approximation de points fixes de contraction
    • Lions P.L. Approximation de points fixes de contraction. C.R. Acad. Sci. Paris Ser. A-B 284 (1977) 1357-1359
    • (1977) C.R. Acad. Sci. Paris Ser. A-B , vol.284 , pp. 1357-1359
    • Lions, P.L.1
  • 18
    • 33344472544 scopus 로고    scopus 로고
    • J.G. O'Hara, P. Pillay, H.-K. Xu, Iterative approaches to convex feasibility problem in Banach space, Nonlinear Anal. Available online 20 October 2005. doi:10.1016/j.na.2005.07.36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.