메뉴 건너뛰기




Volumn 15, Issue 3, 2006, Pages 281-289

Experimental determination of apéry-like identities for ζ(2n + 2)

Author keywords

Central binomial coefficients; Hypergeometric series; Riemann zeta function; Series acceleration

Indexed keywords


EID: 33750875429     PISSN: 10586458     EISSN: 1944950X     Source Type: Journal    
DOI: 10.1080/10586458.2006.10128968     Document Type: Article
Times cited : (34)

References (20)
  • 1
    • 0033243811 scopus 로고    scopus 로고
    • Borwein and Bradleys Apéry-like Formulae for ζ(4n + 3)
    • Gert Almkvist and Andrew Granville. “Borwein and Bradley’s Apéry-like Formulae for ζ(4n + 3).” Experiment. Math. 8 (1999), 197-203.
    • (1999) Experiment. Math. , vol.8 , pp. 197-203
    • Almkvist, G.1    Granville, A.2
  • 2
    • 0035595042 scopus 로고    scopus 로고
    • Parallel Integer Relation Detection: Techniques and Applications
    • David H. Bailey and David J. Broadhurst. “Parallel Integer Relation Detection: Techniques and Applications.” Math. Comp. 70: 236 (2000), 1719-1736.
    • (2000) Math. Comp. , vol.70 , Issue.236 , pp. 1719-1736
    • Bailey, D.H.1    Broadhurst, D.J.2
  • 5
    • 0346204079 scopus 로고    scopus 로고
    • Searching Symbolically for Apéry-like Formulae for Values of the Riemann Zeta Function
    • Jonathan M. Borwein and David M. Bradley. “Searching Symbolically for Apéry-like Formulae for Values of the Riemann Zeta Function.” SIGSAM Bulletin of Algebraic and Symbolic Manipulation 30: 2 (1996), 2-7.
    • (1996) SIGSAM Bulletin of Algebraic and Symbolic Manipulation , vol.30 , Issue.2 , pp. 2-7
    • Borwein, J.M.1    Bradley, D.M.2
  • 6
    • 0031283914 scopus 로고    scopus 로고
    • Empirically Determined Apéry-like Formulae for ζ(4n+3)
    • Jonathan M. Borwein and David M. Bradley. “Empirically Determined Apéry-like Formulae for ζ(4n+3),” Experiment. Math. 6: 3 (1997), 181-194.
    • (1997) Experiment. Math. , vol.6 , Issue.3 , pp. 181-194
    • Borwein, J.M.1    Bradley, D.M.2
  • 8
    • 0035633684 scopus 로고    scopus 로고
    • Central Binomial Sums, Multiple Clausen Values, and Zeta Values
    • Jonathan M. Borwein, David J. Broadhurst, and Joel Kamnitzer, “Central Binomial Sums, Multiple Clausen Values, and Zeta Values.” Experiment. Math. 10 (2001), 25-41.
    • (2001) Experiment. Math. , vol.10 , pp. 25-41
    • Borwein, J.M.1    Broadhurst, D.J.2    Kamnitzer, J.3
  • 13
    • 0038932650 scopus 로고    scopus 로고
    • Analysis of PSLQ, an Integer Relation Finding Algorithm
    • Helaman R. P. Ferguson, David H. Bailey, and Stephen Arno. “Analysis of PSLQ, an Integer Relation Finding Algorithm.” Math. Comp. 68: 225 (1999), 351-369.
    • (1999) Math. Comp. , vol.68 , Issue.225 , pp. 351-369
    • Ferguson, H.R.P.1    Bailey, D.H.2    Arno, S.3
  • 15
    • 0002558728 scopus 로고
    • Letter (In German)
    • Max Koecher. Letter (in German). Math. Intelligencer 2: 2 (1979/1980), 62-64.
    • (1979) Math. Intelligencer , vol.2 , Issue.2 , pp. 62-64
    • Koecher, M.1
  • 16
    • 34250244723 scopus 로고
    • Factoring Polynomials with Rational Coefficients
    • A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, “Factoring Polynomials with Rational Coefficients.” Mathematische Annalen 261 (1982), 515-534.
    • (1982) Mathematische Annalen , vol.261 , pp. 515-534
    • Lenstra, A.K.1    Lenstra, H.W.2    Lovasz, L.3
  • 17
    • 4243737968 scopus 로고
    • Some New Identities for ζ(k)
    • D. Leshchiner. “Some New Identities for ζ(k).” J. Number Theory 13 (1981), 355-362.
    • (1981) J. Number Theory , vol.13 , pp. 355-362
    • Leshchiner, D.1
  • 18
    • 14944361601 scopus 로고    scopus 로고
    • Simultaneous Generation of Koecher and Almkvist-Granvilles Apéry-like Formulae
    • T. Rivoal. “Simultaneous Generation of Koecher and Almkvist-Granville’s Apéry-like Formulae.” Experiment. Math. 13 (2004), 503-508.
    • (2004) Experiment. Math. , vol.13 , pp. 503-508
    • Rivoal, T.1
  • 19
    • 0002145526 scopus 로고
    • A Proof That Euler Missed… Apéry’s Proof of the Irrationality of ζ(3)
    • Alfred van der Poorten. “A Proof That Euler Missed… Apéry’s Proof of the Irrationality of ζ(3).” Math. Intelligencer 1: 4 (1978/79), 195-203.
    • (1978) Math. Intelligencer , vol.1 , Issue.4 , pp. 195-203
    • Van Der Poorten, A.1
  • 20
    • 0042753428 scopus 로고    scopus 로고
    • One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational
    • Translation in Russian Math. Surveys 56: 4 (2001), 774-776
    • V. V. Zudilin. “One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational.” (in Russian) Uspekhi Mat. Nauk 56: 4 (340) (2001), 149-150. Translation in Russian Math. Surveys 56: 4 (2001), 774-776.
    • (2001) Uspekhi Mat. Nauk , vol.56 , Issue.4 , pp. 149-150
    • Zudilin, V.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.