메뉴 건너뛰기




Volumn 4265 LNAI, Issue , 2006, Pages 149-160

A voronoi diagram approach to autonomous clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA REDUCTION; DENSITY (SPECIFIC GRAVITY); INFORMATION ANALYSIS; LEARNING SYSTEMS; LINEAR ALGEBRA;

EID: 33750728071     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11893318_17     Document Type: Conference Paper
Times cited : (11)

References (21)
  • 2
    • 0001654728 scopus 로고
    • On convergence of k-means and partitions with minimum average variance (abstract)
    • MacQueen, J.B.: On convergence of k-means and partitions with minimum average variance (abstract). Annals of Mathematical Statistics 38 (1965) 1084
    • (1965) Annals of Mathematical Statistics , vol.38 , pp. 1084
    • MacQueen, J.B.1
  • 3
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21 (1965) 768
    • (1965) Biometrics , vol.21 , pp. 768
    • Forgy, E.1
  • 5
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • Langley, P., ed.: San Francisco, CA, Morgan Kaufmann
    • Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the number of clusters. In Langley, P., ed.: Proc. 17th International Conference on Machine Learning, San Francisco, CA, Morgan Kaufmann (2000) 727-734
    • (2000) Proc. 17th International Conference on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 6
    • 84898949000 scopus 로고    scopus 로고
    • Learning the k in k-means
    • Thrun, S., Saul, L.K., Schölkopf, B., eds.: MIT Press, Cambridge, MA
    • Hamerly, G., Elkan, C.: Learning the k in k-means. In Thrun, S., Saul, L.K., Schölkopf, B., eds.: Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA (2004) 281-288
    • (2004) Advances in Neural Information Processing Systems 16 , pp. 281-288
    • Hamerly, G.1    Elkan, C.2
  • 7
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Bocca, J.B., Jarke, M., Zaniolo, C., eds.: San Francisco, CA, Morgan Kaufmann
    • Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In Bocca, J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th International Conference on Very Large Data Bases, San Francisco, CA, Morgan Kaufmann (1994) 144-155
    • (1994) Proc. 20th International Conference on Very Large Data Bases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 10
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high dimensional data
    • Boutilier, C., Goldszmidt, M., eds.: San Francisco, CA, Morgan Kaufmann
    • Moore, A.W.: The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In Boutilier, C., Goldszmidt, M., eds.: Proc. 16th Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, Morgan Kaufmann (2000) 397-405
    • (2000) Proc. 16th Conference on Uncertainty in Artificial Intelligence , pp. 397-405
    • Moore, A.W.1
  • 11
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • Fawcett, T., Mishra, N., eds.: Menlo Park, AAAI Press
    • Elkan, C.: Using the triangle inequality to accelerate k-means. In Fawcett, T., Mishra, N., eds.: Proc. 20th International Conference on Machine Learning, Menlo Park, AAAI Press (2003) 147-153
    • (2003) Proc. 20th International Conference on Machine Learning , pp. 147-153
    • Elkan, C.1
  • 12
    • 26944500189 scopus 로고    scopus 로고
    • On autonomous k-means clustering
    • Hacid, M.S., Murray, N., Ras, Z.W., Tsumoto, S., eds.: Foundations of Intelligent Systems, Proc. 15th International Symposium, ISMIS'05. Berlin Heidelberg New York, Springer
    • Elomaa, T., Koivistoinen, H.: On autonomous k-means clustering. In Hacid, M.S., Murray, N., Ras, Z.W., Tsumoto, S., eds.: Foundations of Intelligent Systems, Proc. 15th International Symposium, ISMIS'05. Volume 3488 of Lecture Notes in Artificial Intelligence., Berlin Heidelberg New York, Springer (2005) 228-236
    • (2005) Lecture Notes in Artificial Intelligence , vol.3488 , pp. 228-236
    • Elomaa, T.1    Koivistoinen, H.2
  • 13
    • 0001781555 scopus 로고    scopus 로고
    • Voronoi diagrams
    • Sack, J., Urrutia, G., eds.: North-Holland, Amsterdam, The Netherlands
    • Aurenhammer, F., Klein, R.: Voronoi diagrams. In Sack, J., Urrutia, G., eds.: Handbook of Computational Geometry. North-Holland, Amsterdam, The Netherlands (2000) 201-290
    • (2000) Handbook of Computational Geometry , pp. 201-290
    • Aurenhammer, F.1    Klein, R.2
  • 14
    • 85030634544 scopus 로고
    • A Voronoi diagram based adaptive k-means-type clustering algorithm for multidimensional weighted data
    • Bieri, H., Noltemeier, H., eds.: Computational Geometry - Methods, Algorithms and Applications. Berlin Heidelberg New York, Springer
    • Schreiber, T.: A Voronoi diagram based adaptive k-means-type clustering algorithm for multidimensional weighted data. In Bieri, H., Noltemeier, H., eds.: Computational Geometry - Methods, Algorithms and Applications. Volume 553 of Lecture Notes in Computer Science., Berlin Heidelberg New York, Springer (1991) 265-275
    • (1991) Lecture Notes in Computer Science , vol.553 , pp. 265-275
    • Schreiber, T.1
  • 16
    • 0031701179 scopus 로고    scopus 로고
    • A distribution-based clustering algorithm for mining in large spatial databases
    • Los Alamitos, CA, IEEE Computer Society Press
    • Xu, X., Ester, M., Kriegel, H.P., Sander, J.: A distribution-based clustering algorithm for mining in large spatial databases. In: Proc. 14th International Conference on Data Engineering, Los Alamitos, CA, IEEE Computer Society Press (1998) 324-331
    • (1998) Proc. 14th International Conference on Data Engineering , pp. 324-331
    • Xu, X.1    Ester, M.2    Kriegel, H.P.3    Sander, J.4
  • 17
    • 85132256511 scopus 로고    scopus 로고
    • A general approach to clustering in large databases with noise
    • Hinneburg, A., Keim, D.A.: A general approach to clustering in large databases with noise. Knowledge and Information Systems 5 (2003) 387-415
    • (2003) Knowledge and Information Systems , vol.5 , pp. 387-415
    • Hinneburg, A.1    Keim, D.A.2
  • 18
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 +)-approximation algorithm for k-means clustering in any dimensions
    • Los Alamitos, CA, IEEE Press
    • Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + )-approximation algorithm for k-means clustering in any dimensions. In: Proc. 45th Annual IEEE Symposium on Foundations on Computer Science, Los Alamitos, CA, IEEE Press (2004) 454-462
    • (2004) Proc. 45th Annual IEEE Symposium on Foundations on Computer Science , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.