-
1
-
-
0001847686
-
Domain theory
-
Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds), Oxford University Press, Oxford
-
Abramsky S., and Jung A. Domain theory. In: Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds). Handbook of Logic in Computer Science Vol. III (1994), Oxford University Press, Oxford
-
(1994)
Handbook of Logic in Computer Science
, vol.III
-
-
Abramsky, S.1
Jung, A.2
-
3
-
-
0008932222
-
Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding
-
Bosangue M.M., van Breugel F., and Rutten J.J.M.M. Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theoret. Comput. Sci. 193 (1998) 1-51
-
(1998)
Theoret. Comput. Sci.
, vol.193
, pp. 1-51
-
-
Bosangue, M.M.1
van Breugel, F.2
Rutten, J.J.M.M.3
-
5
-
-
0002574415
-
A computational model for metric spaces
-
Edalat A., and Heckmann R. A computational model for metric spaces. Theoret. Comput. Sci. 193 (1998) 53-73
-
(1998)
Theoret. Comput. Sci.
, vol.193
, pp. 53-73
-
-
Edalat, A.1
Heckmann, R.2
-
6
-
-
0031461105
-
Quantales and continuity spaces
-
Flagg R.C. Quantales and continuity spaces. Algebra Universalis 37 3 (1997) 257-276
-
(1997)
Algebra Universalis
, vol.37
, Issue.3
, pp. 257-276
-
-
Flagg, R.C.1
-
7
-
-
0038141124
-
-
Cambridge University Press, Cambridge
-
Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., and Scott D.S. Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications Vol. 93 (2003), Cambridge University Press, Cambridge
-
(2003)
Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications
, vol.93
-
-
Gierz, G.1
Hofmann, K.H.2
Keimel, K.3
Lawson, J.D.4
Mislove, M.5
Scott, D.S.6
-
8
-
-
0037879732
-
Approximation of metric spaces by partial metric spaces
-
Heckmann R. Approximation of metric spaces by partial metric spaces. Appl. Categorical Struct. 7 1-2 (1999) 71-83
-
(1999)
Appl. Categorical Struct.
, vol.7
, Issue.1-2
, pp. 71-83
-
-
Heckmann, R.1
-
9
-
-
33750712518
-
-
P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph.D. Thesis, Department of Mathematics, National University of Ireland, University College Cork, 2001.
-
-
-
-
10
-
-
0041392847
-
Acceptable programs revisited
-
Elsevier, Amsterdam
-
Hitzler P., and Seda A.K. Acceptable programs revisited. in: Proc. of the Workshop on Verification in Logic Programming, 16th Internat. Conf. on Logic Programming (ICLP'99), Electronic Notes in Theoretical Computer Science Vol. 30 (1999), Elsevier, Amsterdam
-
(1999)
in: Proc. of the Workshop on Verification in Logic Programming, 16th Internat. Conf. on Logic Programming (ICLP'99), Electronic Notes in Theoretical Computer Science
, vol.30
-
-
Hitzler, P.1
Seda, A.K.2
-
11
-
-
33750698718
-
-
P. Hitzler, A.K. Seda, A new fixed point theorem for logic programming semantics, in: Proc. of the Joint IIIS & IEEE Meeting of the Fourth World Multiconference on Systemics, Cybernetics and Informatics (SCI2000) and the Sixth Internat. Conf. on Information Systems Analysis and Synthesis (ISAS2000), 2000, Vol. VII, Computer Science and Engineering Part 1, International Institute of Informatics and Systemics, 2000, pp. 418-423.
-
-
-
-
12
-
-
34250800935
-
The fixed-point theorems of Priess-Crampe and Ribenboim in logic programming
-
American Mathematical Society, Providence, RI
-
Hitzler P., and Seda A.K. The fixed-point theorems of Priess-Crampe and Ribenboim in logic programming. Valuation Theory and its Applications, in: Proc. of the 1999 Valuation Theory Conference, University of Saskatchewan in Saskatoon, Canada, Fields Institute Communications Vol. 32 (2002), American Mathematical Society, Providence, RI 219-235
-
(2002)
Valuation Theory and its Applications, in: Proc. of the 1999 Valuation Theory Conference, University of Saskatchewan in Saskatoon, Canada, Fields Institute Communications
, vol.32
, pp. 219-235
-
-
Hitzler, P.1
Seda, A.K.2
-
13
-
-
0042029626
-
Generalized metrics and uniquely determined logic programs
-
Hitzler P., and Seda A.K. Generalized metrics and uniquely determined logic programs. Theoret. Comput. Sci. 305 1-3 (2003) 187-219
-
(2003)
Theoret. Comput. Sci.
, vol.305
, Issue.1-3
, pp. 187-219
-
-
Hitzler, P.1
Seda, A.K.2
-
14
-
-
0003050091
-
All topologies come from generalized metrics
-
Kopperman R. All topologies come from generalized metrics. Amer. Math. Monthly 95 2 (1988) 89-97
-
(1988)
Amer. Math. Monthly
, vol.95
, Issue.2
, pp. 89-97
-
-
Kopperman, R.1
-
16
-
-
0028558872
-
-
S.G. Matthews, Partial metric topology, in: Proc. Eighth Summer Conference on General Topology and its Applications, Annals of the New York Academy of Sciences, Vol. 728, 1994, pp. 183-197.
-
-
-
-
17
-
-
33750698382
-
-
S.J. O'Neill, A fundamental study into the theory and application of the partial metric spaces, Ph.D. Thesis, Department of Computer Science, University of Warwick, 1998.
-
-
-
-
18
-
-
33749552277
-
Logic programming and ultrametric spaces
-
Prieß-Crampe S., and Ribenboim P. Logic programming and ultrametric spaces. Rendi. Math. VII 19 (1999) 155-176
-
(1999)
Rendi. Math.
, vol.VII
, Issue.19
, pp. 155-176
-
-
Prieß-Crampe, S.1
Ribenboim, P.2
-
19
-
-
33750716286
-
-
J.J.M.M. Rutten, Weighted colimits and formal balls in generalized metric spaces, Technical Report SEN-R9711, CWI, Amsterdam, 1997.
-
-
-
-
20
-
-
0043031297
-
A characterization of partial metrizability. Domains are quantifiable
-
Schellekens M.P. A characterization of partial metrizability. Domains are quantifiable. Theoret. Comput. Sci. 305 (2003) 409-432
-
(2003)
Theoret. Comput. Sci.
, vol.305
, pp. 409-432
-
-
Schellekens, M.P.1
-
21
-
-
85034837164
-
Reconciling domains and metric spaces
-
Main M., Melton A., Mislove M., and Schmidt D. (Eds), Springer, Berlin
-
Smyth M.B. Reconciling domains and metric spaces. In: Main M., Melton A., Mislove M., and Schmidt D. (Eds). Proc. Workshop on Mathematical Foundations of Programming Language Semantics, Lecture Notes in Computer Science Vol. 298 (1988), Springer, Berlin 236-253
-
(1988)
Proc. Workshop on Mathematical Foundations of Programming Language Semantics, Lecture Notes in Computer Science
, vol.298
, pp. 236-253
-
-
Smyth, M.B.1
-
22
-
-
0001744565
-
Topology
-
Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds), Oxford University Press, Oxford
-
Smyth M.B. Topology. In: Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds). Handbook of Logic in Computer Science Vol. I (1992), Oxford University Press, Oxford
-
(1992)
Handbook of Logic in Computer Science
, vol.I
-
-
Smyth, M.B.1
-
23
-
-
33750716992
-
-
P. Waszkiewicz, Quantitative continuous domains, Ph.D. Thesis, School of Computer Science, University of Birmingham, 2002.
-
-
-
|