-
2
-
-
0029393028
-
On the greatest fixed point of a set functor
-
Adámek J. and Koubek V. (1995) On the greatest fixed point of a set functor. Theoretical Computer Science 150 57-75.
-
(1995)
Theoretical Computer Science
, vol.150
, pp. 57-75
-
-
Adámek, J.1
Koubek, V.2
-
3
-
-
0027610699
-
Terminal coalgebras in well-founded set theory
-
Barr, M. (1993) Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114 (2) 299-315.
-
(1993)
Theoretical Computer Science
, vol.114
, Issue.2
, pp. 299-315
-
-
Barr, M.1
-
7
-
-
0003198753
-
Logics of time and computation
-
(second edition). Center for the Study of Language and Information, Stanford University
-
Goldblatt, R. (1992) Logics of Time and Computation (second edition). CSLI Lecture Notes 1, Center for the Study of Language and Information, Stanford University.
-
(1992)
CSLI Lecture Notes
, vol.1
-
-
Goldblatt, R.1
-
9
-
-
17844383468
-
Many-sorted coalgebraic modal logic: A model-theoretic study
-
Jacobs, B. (2001) Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Informatics and Applications 35 (1) 31-59.
-
(2001)
Theoretical Informatics and Applications
, vol.35
, Issue.1
, pp. 31-59
-
-
Jacobs, B.1
-
13
-
-
0043210204
-
A co-variety-theorem for modal logic
-
Zakharyaschev, M., Segerberg, K., de Rijke, M. and Wansing, H. (eds.) Center for the Study of Language and Information, Stanford University
-
Kurz, A. (2001a) A co-variety-theorem for modal logic. In: Zakharyaschev, M., Segerberg, K., de Rijke, M. and Wansing, H. (eds.) Advances in Modal Logic 2, Center for the Study of Language and Information, Stanford University.
-
(2001)
Advances in Modal Logic
, vol.2
-
-
Kurz, A.1
-
14
-
-
18944393714
-
Modal rules are co-implications
-
Corradini, A., Lenisa, M. and Montanari, U. (eds.) Coalgebraic Methods in Computer Science
-
Kurz, A. (2001b) Modal rules are co-implications. In: Corradini, A., Lenisa, M. and Montanari, U. (eds.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science 44(1).
-
(2001)
Electronic Notes in Theoretical Computer Science
, vol.44
, Issue.1
-
-
Kurz, A.1
-
15
-
-
0034917918
-
Specifying coalgebras with modal logic
-
Kurz, A. (2001c) Specifying coalgebras with modal logic. Theoretical Computer Science 260 119-138.
-
(2001)
Theoretical Computer Science
, vol.260
, pp. 119-138
-
-
Kurz, A.1
-
16
-
-
18944406687
-
Definability, canonical models, compactness for finitary coalgebraic modal logic
-
Moss, L. (ed.) Coalgebraic Methods in Computer Science
-
Kurz, A. and Pattinson, D. (2002) Definability, canonical models, compactness for finitary coalgebraic modal logic. In: Moss, L. (ed.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science 65 (1).
-
(2002)
Electronic Notes in Theoretical Computer Science
, vol.65
, Issue.1
-
-
Kurz, A.1
Pattinson, D.2
-
18
-
-
0001744565
-
Topology
-
Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.), Oxford University Press
-
Smyth, M. (1993) Topology. In: Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.) Handbook of Logic in Computer Science 1, Oxford University Press.
-
(1993)
Handbook of Logic in Computer Science
, vol.1
-
-
Smyth, M.1
-
20
-
-
84957101344
-
Semantical principles in the modal logic of coalgebras
-
Proceedings 18th International Symposium on Theoretical Aspects of Computer Science (STAGS 2001)
-
Pattinson, D. (2001) Semantical principles in the modal logic of coalgebras. In: Proceedings 18th International Symposium on Theoretical Aspects of Computer Science (STAGS 2001). Springer-Verlag Lecture Notes in Computer Science 2010.
-
(2001)
Springer-Verlag Lecture Notes in Computer Science
, vol.2010
-
-
Pattinson, D.1
-
21
-
-
0242440308
-
Coalgebraic modal logic: Soundness, completeness and decidablility of local consequence
-
Pattinson, D. (2003) Coalgebraic Modal Logic: Soundness, Completeness and Decidablility of Local Consequence. Theoretical Computer Science 309 (1-3) 177-193.
-
(2003)
Theoretical Computer Science
, vol.309
, Issue.1-3
, pp. 177-193
-
-
Pattinson, D.1
-
22
-
-
10444246294
-
Expressive logics for coalgebras via terminal sequence induction
-
Pattinson, D. (2004) Expressive logics for coalgebras via terminal sequence induction. Notre Dame Journal of Formal Logic 45 (1) 19-33.
-
(2004)
Notre Dame Journal of Formal Logic
, vol.45
, Issue.1
, pp. 19-33
-
-
Pattinson, D.1
-
23
-
-
0002181286
-
On coalgebra of real numbers
-
Jacobs, B. and Rutten, J. (eds.) Coalgebraic Methods in Computer Science
-
Pavlovic, D. and Pratt, V. (2000) On coalgebra of real numbers. In: Jacobs, B. and Rutten, J. (eds.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science 19.
-
(2000)
Electronic Notes in Theoretical Computer Science
, vol.19
-
-
Pavlovic, D.1
Pratt, V.2
-
24
-
-
18944403292
-
Coalgebras and modal logic
-
Reichel, H. (ed.) Coalgebraic Methods in Computer Science
-
Rößiger, M. (2000) Coalgebras and modal logic. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science 33.
-
(2000)
Electronic Notes in Theoretical Computer Science
, vol.33
-
-
Rößiger, M.1
-
25
-
-
0034928008
-
From modal logic to terminal coalgebras
-
Rößiger, M. (2001) From modal logic to terminal coalgebras. Theoretical Computer Science 260 209-228.
-
(2001)
Theoretical Computer Science
, vol.260
, pp. 209-228
-
-
Rößiger, M.1
-
26
-
-
0001986854
-
Universal coalgebra: A theory of systems
-
Rutten, J. J. M. M. (2000) Universal coalgebra: A theory of systems. Theoretical Computer Science 249 3-80.
-
(2000)
Theoretical Computer Science
, vol.249
, pp. 3-80
-
-
Rutten, J.J.M.M.1
-
28
-
-
18944371430
-
Terminal sequences for accessible endofunctors
-
Jacobs, B. and Rutten, J. (eds.) Coalgebraic Methods in Computer Science
-
Worrell, J. (1999) Terminal sequences for accessible endofunctors. In: Jacobs, B. and Rutten, J. (eds.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science 19.
-
(1999)
Electronic Notes in Theoretical Computer Science
, vol.19
-
-
Worrell, J.1
-
29
-
-
0142043267
-
-
Ph.D. thesis, Oxford University Computing Laboratory
-
Worrell, J. (2000) On Coalgebras and Final Semantics, Ph.D. thesis, Oxford University Computing Laboratory.
-
(2000)
On Coalgebras and Final Semantics
-
-
Worrell, J.1
|