-
1
-
-
0001295415
-
A reaction‐diffusion system arising in modeling man‐environment diseases
-
1 V. Capasso, K. Kunisch, A reaction‐diffusion system arising in modeling man‐environment diseases, Quart Appl Math 46 ( 1988), 431–449.
-
(1988)
Quart Appl Math
, vol.46
, pp. 431-449
-
-
Capasso, V.1
Kunisch, K.2
-
2
-
-
0020544005
-
A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories
-
2 W. A. Day, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart Appl Math 41 ( 1983), 468–475.
-
(1983)
Quart Appl Math
, vol.41
, pp. 468-475
-
-
Day, W.A.1
-
3
-
-
0025545369
-
An implicit finite difference scheme for the diffusion equation subject to mass specification
-
3 J. R. Cannon, Y. Lin, S. Wang, An implicit finite difference scheme for the diffusion equation subject to mass specification, Int J Eng Sci 28 (7) ( 1990), 573–578.
-
(1990)
Int J Eng Sci
, vol.28
, Issue.7
, pp. 573-578
-
-
Cannon, J.R.1
Lin, Y.2
Wang, S.3
-
4
-
-
0038668850
-
A method of solution for the one‐dimensional heat equation subject to a nonlocal condition
-
4 W. T. Ang, A method of solution for the one‐dimensional heat equation subject to a nonlocal condition, SEA Bull Math 26 (2) ( 2002), 197–203.
-
(2002)
SEA Bull Math
, vol.26
, Issue.2
, pp. 197-203
-
-
Ang, W.T.1
-
5
-
-
0038373225
-
Numerical solution of a parabolic equation with non‐local boundary specifications
-
5 M. Dehghan, Numerical solution of a parabolic equation with non‐local boundary specifications, Appl Math Comput 145 ( 2003), 185–194.
-
(2003)
Appl Math Comput
, vol.145
, pp. 185-194
-
-
Dehghan, M.1
-
6
-
-
9544239366
-
Efficient techniques for the second–order parabolic equation subject to nonlocal specifications
-
6 M. Dehghan, Efficient techniques for the second–order parabolic equation subject to nonlocal specifications, Appl Numer Math 52 ( 2005), 39–62.
-
(2005)
Appl Numer Math
, vol.52
, pp. 39-62
-
-
Dehghan, M.1
-
7
-
-
0001463181
-
Finite difference methods for a non‐local boundary value problem for the heat equation
-
7 G. Ekolin, Finite difference methods for a non‐local boundary value problem for the heat equation, BIT 31 (2) ( 1991), 245–255.
-
(1991)
BIT
, vol.31
, Issue.2
, pp. 245-255
-
-
Ekolin, G.1
-
8
-
-
0347380841
-
Numerical solution of a parabolic equation subject to specification of energy
-
8 M. Dehghan, Numerical solution of a parabolic equation subject to specification of energy, Appl Math Comput 149 ( 2004), 31–45.
-
(2004)
Appl Math Comput
, vol.149
, pp. 31-45
-
-
Dehghan, M.1
-
9
-
-
28244459412
-
A tau method approximation for the diffusion equation with nonlocal boundary conditions
-
9 A. Saadatmandi, M. Razzaghi, A tau method approximation for the diffusion equation with nonlocal boundary conditions, Int J Comput Math 81 (11) ( 2004), 1427–1432.
-
(2004)
Int J Comput Math
, vol.81
, Issue.11
, pp. 1427-1432
-
-
Saadatmandi, A.1
Razzaghi, M.2
-
10
-
-
0037279705
-
Numerical solution of a non‐local boundary value problem with Neumann's boundary conditions
-
10 M. Dehghan, Numerical solution of a non‐local boundary value problem with Neumann's boundary conditions, Commun Numer Methods Engng 19 ( 2003), 1–12.
-
(2003)
Commun Numer Methods Engng
, vol.19
, pp. 1-12
-
-
Dehghan, M.1
-
11
-
-
0023364649
-
A Galerkin procedure for the diffusion equation subject to the specification of mass
-
11 J. R. Cannon, S. P. Esteva, J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Numer Anal 24 ( 1987), 499–515.
-
(1987)
SIAM J Numer Anal
, vol.24
, pp. 499-515
-
-
Cannon, J.R.1
Esteva, S.P.2
van der Hoek, J.3
-
12
-
-
45349112919
-
On a class of non‐classical parabolic problems
-
12 J. R. Cannon, H. M. Yin, On a class of non‐classical parabolic problems, J Differential Eqs 79 ( 1989), 266–288.
-
(1989)
J Differential Eqs
, vol.79
, pp. 266-288
-
-
Cannon, J.R.1
Yin, H.M.2
-
13
-
-
0000355020
-
Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories
-
13 W. A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart Appl Math 40 ( 1982), 319–330.
-
(1982)
Quart Appl Math
, vol.40
, pp. 319-330
-
-
Day, W.A.1
-
14
-
-
0000246858
-
Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions
-
14 A. Friedman, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Quart Appl Math 44 ( 1986), 468–475.
-
(1986)
Quart Appl Math
, vol.44
, pp. 468-475
-
-
Friedman, A.1
-
15
-
-
0000882953
-
Remark on a paper by D. A. Day on a maximum principle under nonlocal boundary conditions
-
15 B. Kawohl, Remark on a paper by D. A. Day on a maximum principle under nonlocal boundary conditions, Quart Appl Math 45 ( 1987), 751–752.
-
(1987)
Quart Appl Math
, vol.45
, pp. 751-752
-
-
Kawohl, B.1
-
16
-
-
0000360006
-
Finite difference approximations for a class of nonlocal parabolic equations
-
16 Y. Lin, S. Xu, H. M. Yin, Finite difference approximations for a class of nonlocal parabolic equations, Int J Math Math Sci 20 (1) ( 1997), 147–164.
-
(1997)
Int J Math Math Sci
, vol.20
, Issue.1
, pp. 147-164
-
-
Lin, Y.1
Xu, S.2
Yin, H.M.3
-
17
-
-
0004136180
-
Spectral methods in MATLAB
-
17 L. N. Trefethen, Spectral methods in MATLAB, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
-
(2000)
-
-
Trefethen, L.N.1
-
18
-
-
0003766476
-
Spectral methods in fluid dynamics
-
18 C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer‐Verlag, New York, 1988.
-
(1988)
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
19
-
-
0025068163
-
A numerical method for the diffusion equation with nonlocal boundary specifications
-
19 S. Wang, Y. Lin, A numerical method for the diffusion equation with nonlocal boundary specifications, Int J Eng Sci 28 ( 1990), 543–546.
-
(1990)
Int J Eng Sci
, vol.28
, pp. 543-546
-
-
Wang, S.1
Lin, Y.2
-
20
-
-
0003422931
-
Chebyshev and Fourier spectral methods
-
20 J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publications, Mineola, NY, 2001.
-
(2001)
-
-
Boyd, J.P.1
-
21
-
-
0036154549
-
Direct trajectory optimization by a Chebyshev pseudospectral method
-
21 F. Fahroo, I. M. Ross, Direct trajectory optimization by a Chebyshev pseudospectral method, J Guid Control Dynam 25 (1) ( 2002), 160–166.
-
(2002)
J Guid Control Dynam
, vol.25
, Issue.1
, pp. 160-166
-
-
Fahroo, F.1
Ross, I.M.2
-
22
-
-
84968822473
-
Exploiting higher‐order derivatives in computational optimal control, presented at the IEEE Mediterranean Conf. Control and Automation
-
22 I. M. Ross, J. Rea, F. Fahroo, Exploiting higher‐order derivatives in computational optimal control, presented at the IEEE Mediterranean Conf. Control and Automation, Lisbon, Portugal, July 2002.
-
(2002)
-
-
Ross, I.M.1
Rea, J.2
Fahroo, F.3
-
23
-
-
11144275388
-
On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
-
23 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Equations 21 ( 2005), 24–40.
-
(2005)
Numer Methods Partial Differential Equations
, vol.21
, pp. 24-40
-
-
Dehghan, M.1
-
24
-
-
24944461151
-
Numerical approximations for solving a time‐dependent partial differential equation with non‐classical specification on four boundaries
-
24 M. Dehghan, Numerical approximations for solving a time‐dependent partial differential equation with non‐classical specification on four boundaries, Appl Math Comput 167 ( 2005), 28–45.
-
(2005)
Appl Math Comput
, vol.167
, pp. 28-45
-
-
Dehghan, M.1
|