-
1
-
-
0002417423
-
The parameter B/A
-
ed. M. F. Hamilton and D. T. Blackstock, pp, London: Academic Press
-
Beyer, R. T. 1997 The parameter B/A. In Nonlinear acoustics (ed. M. F. Hamilton and D. T. Blackstock), pp. 25-39. London: Academic Press.
-
(1997)
Nonlinear acoustics
, pp. 25-39
-
-
Beyer, R.T.1
-
3
-
-
0344899820
-
Observation of shock transverse waves in elastic media
-
Catheline, S., Gennisson, J.-L., Tanter, M. and Fink, M. 2003 Observation of shock transverse waves in elastic media. Phys. Rev. Lett. 91, 164301.
-
(2003)
Phys. Rev. Lett
, vol.91
, pp. 164301
-
-
Catheline, S.1
Gennisson, J.-L.2
Tanter, M.3
Fink, M.4
-
4
-
-
85020816820
-
-
Chen, P. J. 1973 Growth and decay of waves in solids. In Handbuch der Physik (ed. S. Flügge and C. Truesdell), VIa/3, pp. 303-402. Berlin: Springer.
-
Chen, P. J. 1973 Growth and decay of waves in solids. In Handbuch der Physik (ed. S. Flügge and C. Truesdell), vol. VIa/3, pp. 303-402. Berlin: Springer.
-
-
-
-
5
-
-
0008464728
-
Acoustic resonance is spherically symmetric waves
-
Chester, W. 1991 Acoustic resonance is spherically symmetric waves. Proc. R. Soc. A 434, 459-463.
-
(1991)
Proc. R. Soc. A
, vol.434
, pp. 459-463
-
-
Chester, W.1
-
6
-
-
13444295857
-
Growth and decay of discontinuities in fluids with internal state variables
-
Coleman, B. D. and Gurtin, M. E. 1967 Growth and decay of discontinuities in fluids with internal state variables. Phys. Fluids 10, 1454-1458.
-
(1967)
Phys. Fluids
, vol.10
, pp. 1454-1458
-
-
Coleman, B.D.1
Gurtin, M.E.2
-
7
-
-
0000963116
-
Asymptotic solutions of model equations in nonlinear acoustics
-
Crighton, D. G. and Scott, J. F. 1979 Asymptotic solutions of model equations in nonlinear acoustics. Phil. Trans. R. Soc. A 292, 101-134.
-
(1979)
Phil. Trans. R. Soc. A
, vol.292
, pp. 101-134
-
-
Crighton, D.G.1
Scott, J.F.2
-
8
-
-
0003421814
-
-
London: Academic Press
-
Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C. 1982 Solitons and nonlinear wave equations. London: Academic Press.
-
(1982)
Solitons and nonlinear wave equations
-
-
Dodd, R.K.1
Eilbeck, J.C.2
Gibbon, J.D.3
Morris, H.C.4
-
9
-
-
0345238363
-
Compressible flow through a porous plate
-
Emanuel, G. and Jones, J. P. 1968 Compressible flow through a porous plate. Int. J. Heat Mass Transf. 11, 827-836.
-
(1968)
Int. J. Heat Mass Transf
, vol.11
, pp. 827-836
-
-
Emanuel, G.1
Jones, J.P.2
-
10
-
-
0033950415
-
Transient acoustic wave propagation in rigid porous media: A time-domain approach
-
Fellah, Z. E. A. and Depollier, C. 2000 Transient acoustic wave propagation in rigid porous media: a time-domain approach. J. Acoust. Soc. Am. 107, 683-688.
-
(2000)
J. Acoust. Soc. Am
, vol.107
, pp. 683-688
-
-
Fellah, Z.E.A.1
Depollier, C.2
-
11
-
-
0242524424
-
Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves
-
Fellah, Z. E. A., Depollier, C., Berger, S., Lauriks, W., Trompette, P. and Chapelon, J.-Y. 2003 Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves. J. Acoust. Soc. Am. 114, 2561-2569.
-
(2003)
J. Acoust. Soc. Am
, vol.114
, pp. 2561-2569
-
-
Fellah, Z.E.A.1
Depollier, C.2
Berger, S.3
Lauriks, W.4
Trompette, P.5
Chapelon, J.-Y.6
-
12
-
-
0002485994
-
Model equations
-
ed. M. F. Hamilton and D. T. Blackstock, pp, London: Academic Press
-
Hamilton, M. F. and Morfey, C. L. 1997 Model equations. In Nonlinear acoustics (ed. M. F. Hamilton and D. T. Blackstock), pp. 41-63. London: Academic Press.
-
(1997)
Nonlinear acoustics
, pp. 41-63
-
-
Hamilton, M.F.1
Morfey, C.L.2
-
13
-
-
2442440652
-
An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation
-
Jordan, P. M. 2004 An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation. Phys. Lett. A 326, 77-84.
-
(2004)
Phys. Lett. A
, vol.326
, pp. 77-84
-
-
Jordan, P.M.1
-
14
-
-
13444278585
-
A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves
-
Jordan, P. M. and Christov, C. I. 2005 A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves. J. Sound Vib. 281, 1207-1216.
-
(2005)
J. Sound Vib
, vol.281
, pp. 1207-1216
-
-
Jordan, P.M.1
Christov, C.I.2
-
15
-
-
0034504072
-
Causal implications of viscous damping in compressible fluid flows
-
Jordan, P. M., Meyer, M. R. and Puri, A. 2000 Causal implications of viscous damping in compressible fluid flows. Phys. Rev. E 62, 7918-7926.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 7918-7926
-
-
Jordan, P.M.1
Meyer, M.R.2
Puri, A.3
-
16
-
-
0004098086
-
-
3rd edn. London: Wiley
-
Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V. 1982 Fundamentals of acoustics, 3rd edn. London: Wiley.
-
(1982)
Fundamentals of acoustics
-
-
Kinsler, L.E.1
Frey, A.R.2
Coppens, A.B.3
Sanders, J.V.4
-
17
-
-
0001536460
-
Equations of nonlinear acoustics
-
Kuznetsov, V. P. 1971 Equations of nonlinear acoustics. Sov. Phys. Acoust. 16, 467-470.
-
(1971)
Sov. Phys. Acoust
, vol.16
, pp. 467-470
-
-
Kuznetsov, V.P.1
-
18
-
-
0004165119
-
-
New York: McGraw-Hill
-
Liggett, J. A. 1994 Fluid mechanics, p. 64. New York: McGraw-Hill.
-
(1994)
Fluid mechanics
, pp. 64
-
-
Liggett, J.A.1
-
20
-
-
0018047191
-
Acceleration waves and second sound in a perfect fluid
-
Lindsay, K. A. and Straughan, B. 1978 Acceleration waves and second sound in a perfect fluid. Arch. Rat. Mech. Anal. 68, 53-87.
-
(1978)
Arch. Rat. Mech. Anal
, vol.68
, pp. 53-87
-
-
Lindsay, K.A.1
Straughan, B.2
-
22
-
-
0011455197
-
Singular surfaces and waves
-
ed. A. C. Eringen, London: Academic Press
-
McCarthy, M. F. 1975 Singular surfaces and waves. In Continuum physics (ed. A. C. Eringen), vol. II, pp. 449-521. London: Academic Press.
-
(1975)
Continuum physics
, vol.2
, pp. 449-521
-
-
McCarthy, M.F.1
-
23
-
-
4444279258
-
A positivity-preserving nonstandard finite difference scheme for the damped wave equation
-
Mickens, R. E. and Jordan, P. M. 2004 A positivity-preserving nonstandard finite difference scheme for the damped wave equation. Num. Meth. Partial Diff. Eq. 20, 639-649.
-
(2004)
Num. Meth. Partial Diff. Eq
, vol.20
, pp. 639-649
-
-
Mickens, R.E.1
Jordan, P.M.2
-
26
-
-
0028194353
-
Modelling high speed flow of a compressible fluid in a saturated porous medium
-
Nield, D. A. 1994 Modelling high speed flow of a compressible fluid in a saturated porous medium. Trans. Porous Media 14, 85-88.
-
(1994)
Trans. Porous Media
, vol.14
, pp. 85-88
-
-
Nield, D.A.1
-
29
-
-
0022444704
-
Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley's wave attenuation in acoustical well logging
-
Pascal, H. 1986 Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley's wave attenuation in acoustical well logging. Int. J. Eng. Sci. 24, 1553-1570.
-
(1986)
Int. J. Eng. Sci
, vol.24
, pp. 1553-1570
-
-
Pascal, H.1
-
30
-
-
1642525808
-
A note on discontinuity waves in type III thermoelasticity
-
doi:10.1098/rspa.2003.1131
-
Quintanilla, R. and Straughan, B. 2004 A note on discontinuity waves in type III thermoelasticity. Proc. R. Soc. A 460, 1169-1175. (doi:10.1098/rspa.2003.1131.)
-
(2004)
Proc. R. Soc. A
, vol.460
, pp. 1169-1175
-
-
Quintanilla, R.1
Straughan, B.2
-
31
-
-
0010717627
-
The growth and decay of sonic discontinuities in ideal gases
-
Thomas, T. Y. 1957 The growth and decay of sonic discontinuities in ideal gases. J. Math. Mech. 6, 455-469.
-
(1957)
J. Math. Mech
, vol.6
, pp. 455-469
-
-
Thomas, T.Y.1
-
32
-
-
0001700852
-
The classical field theories
-
ed. S. Flügge, Berlin: Springer
-
Truesdell, C. and Toupin, R. A. 1960 The classical field theories. In Handbuch der Physik (ed. S. Flügge), vol. III/1, pp. 491-529. Berlin: Springer.
-
(1960)
Handbuch der Physik
, vol.III 1
, pp. 491-529
-
-
Truesdell, C.1
Toupin, R.A.2
-
33
-
-
66749145492
-
-
ch. 1, pp, London: Wiley
-
Zucrow, M. J. and Hoffman, J. D. 1976 Gas dynamics, vol. 1, ch. 1, pp. 13-15. London: Wiley.
-
(1976)
Gas dynamics
, vol.1
, pp. 13-15
-
-
Zucrow, M.J.1
Hoffman, J.D.2
|