-
1
-
-
0003153458
-
The asymptotics of the gap in the Mathieu equation
-
Avron J., and Simon B. The asymptotics of the gap in the Mathieu equation. Ann. Phys. 134 (1981) 76-84
-
(1981)
Ann. Phys.
, vol.134
, pp. 76-84
-
-
Avron, J.1
Simon, B.2
-
2
-
-
0037145461
-
Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps
-
Djakov P., and Mityagin B. Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps. J. Funct. Anal. 195 (2002) 89-128
-
(2002)
J. Funct. Anal.
, vol.195
, pp. 89-128
-
-
Djakov, P.1
Mityagin, B.2
-
3
-
-
4444381849
-
Spectral triangles of Schrödinger operators with complex potentials
-
Djakov P., and Mityagin B. Spectral triangles of Schrödinger operators with complex potentials. Selecta Math. (N.S.) 9 (2003) 495-528
-
(2003)
Selecta Math. (N.S.)
, vol.9
, pp. 495-528
-
-
Djakov, P.1
Mityagin, B.2
-
4
-
-
4043048841
-
The asymptotics of spectral gaps of 1D Dirac operator with cosine potential
-
Djakov P., and Mityagin B. The asymptotics of spectral gaps of 1D Dirac operator with cosine potential. Lett. Math. Phys. 65 (2003) 95-108
-
(2003)
Lett. Math. Phys.
, vol.65
, pp. 95-108
-
-
Djakov, P.1
Mityagin, B.2
-
5
-
-
4444312601
-
Asymptotics of spectral gaps of a Schrödinger operator with a two terms potential
-
Djakov P., and Mityagin B. Asymptotics of spectral gaps of a Schrödinger operator with a two terms potential. C. R. Math. Acad. Sci. Paris 339 (2004) 351-354
-
(2004)
C. R. Math. Acad. Sci. Paris
, vol.339
, pp. 351-354
-
-
Djakov, P.1
Mityagin, B.2
-
6
-
-
12344332690
-
Multiplicities of the eigenvalues of periodic Dirac operators
-
Djakov P., and Mityagin B. Multiplicities of the eigenvalues of periodic Dirac operators. J. Differential Equations 210 (2005) 178-216
-
(2005)
J. Differential Equations
, vol.210
, pp. 178-216
-
-
Djakov, P.1
Mityagin, B.2
-
7
-
-
20944441301
-
Simple and double eigenvalues of the Hill operator with a two term potential
-
Djakov P., and Mityagin B. Simple and double eigenvalues of the Hill operator with a two term potential. J. Approx. Theory 135 (2005) 70-104
-
(2005)
J. Approx. Theory
, vol.135
, pp. 70-104
-
-
Djakov, P.1
Mityagin, B.2
-
8
-
-
33750506150
-
-
P. Djakov, B. Mityagin, Instability zones of periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), in press
-
-
-
-
10
-
-
0000466619
-
Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill
-
Grigis A. Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill. Ann. Sci. École Norm. Sup. (4) 20 (1987) 641-672
-
(1987)
Ann. Sci. École Norm. Sup. (4)
, vol.20
, pp. 641-672
-
-
Grigis, A.1
-
11
-
-
0005424922
-
On the effect of the boundary conditions on the eigenvalues of ordinary differential equations
-
Johns Hopkins Univ. Press, Baltimore, MD
-
Harrell E. On the effect of the boundary conditions on the eigenvalues of ordinary differential equations. Suppl. Amer. J. Math., dedicated to P. Hartman (1981), Johns Hopkins Univ. Press, Baltimore, MD 139-150
-
(1981)
Suppl. Amer. J. Math., dedicated to P. Hartman
, pp. 139-150
-
-
Harrell, E.1
-
12
-
-
84960572218
-
On the zeros of Mathieu functions
-
Hille E. On the zeros of Mathieu functions. Proc. London Math. Soc. 23 (1923) 185-237
-
(1923)
Proc. London Math. Soc.
, vol.23
, pp. 185-237
-
-
Hille, E.1
-
13
-
-
0005655067
-
Estimates on the stability intervals for the Hill's equation
-
Hochstadt H. Estimates on the stability intervals for the Hill's equation. Proc. Amer. Math. Soc. 14 (1963) 930-932
-
(1963)
Proc. Amer. Math. Soc.
, vol.14
, pp. 930-932
-
-
Hochstadt, H.1
-
14
-
-
0348119318
-
A proof of the impossibility of the coexistence of two Mathieu functions
-
Ince E.L. A proof of the impossibility of the coexistence of two Mathieu functions. Proc. Cambridge Philos. Soc. 21 (1922) 117-120
-
(1922)
Proc. Cambridge Philos. Soc.
, vol.21
, pp. 117-120
-
-
Ince, E.L.1
-
15
-
-
84960605212
-
A linear differential equation with periodic coefficients
-
Ince E.L. A linear differential equation with periodic coefficients. Proc. London Math. Soc. 23 (1923) 56-74
-
(1923)
Proc. London Math. Soc.
, vol.23
, pp. 56-74
-
-
Ince, E.L.1
-
16
-
-
0000192792
-
Integrable highest weight modules over affine superalgebras and number theory
-
Lie Theory and Geometry, in Honor of Bertram Kostant. Brylinski J.L., Brylinski R., Guillemin V., and Kac V. (Eds), Birkhäuser Boston, Boston, MA
-
Kac V.G., and Wakimoto M. Integrable highest weight modules over affine superalgebras and number theory. In: Brylinski J.L., Brylinski R., Guillemin V., and Kac V. (Eds). Lie Theory and Geometry, in Honor of Bertram Kostant. Progr. Math. vol. 123 (1994), Birkhäuser Boston, Boston, MA 415-456
-
(1994)
Progr. Math.
, vol.123
, pp. 415-456
-
-
Kac, V.G.1
Wakimoto, M.2
-
17
-
-
0001830930
-
Advanced determinant calculus
-
67 pp
-
Krattenthaler C. Advanced determinant calculus. Sém. Lothar. Combin. 42 B42q (1999) 67 pp
-
(1999)
Sém. Lothar. Combin.
, vol.42
, Issue.B42q
-
-
Krattenthaler, C.1
-
18
-
-
0039793963
-
Introduction to Spectral Theory; Selfadjoint Ordinary Differential Operators
-
Amer. Math. Soc., Providence, RI
-
Levitan B.M., and Sargsian I.S. Introduction to Spectral Theory; Selfadjoint Ordinary Differential Operators. Transl. Math. Monogr. vol. 39 (1975), Amer. Math. Soc., Providence, RI
-
(1975)
Transl. Math. Monogr.
, vol.39
-
-
Levitan, B.M.1
Sargsian, I.S.2
-
19
-
-
84980087992
-
Instability intervals of Hill's equation
-
Levy D.M., and Keller J.B. Instability intervals of Hill's equation. Comm. Pure Appl. Math. 16 (1963) 469-476
-
(1963)
Comm. Pure Appl. Math.
, vol.16
, pp. 469-476
-
-
Levy, D.M.1
Keller, J.B.2
-
21
-
-
0003347279
-
Sturm-Liouville Operators and Applications
-
Birkhäuser, Basel
-
Marchenko V.A. Sturm-Liouville Operators and Applications. Oper. Theory Adv. Appl. vol. 22 (1986), Birkhäuser, Basel
-
(1986)
Oper. Theory Adv. Appl.
, vol.22
-
-
Marchenko, V.A.1
-
22
-
-
0001615013
-
A characterization of the spectrum of the Hill operator
-
633-634 (in Russian)
-
Marchenko V.A., and Ostrovskii I.V. A characterization of the spectrum of the Hill operator. Mat. Sb. (N.S.) 97 139 (1975) 540-606 633-634 (in Russian)
-
(1975)
Mat. Sb. (N.S.)
, vol.97
, Issue.139
, pp. 540-606
-
-
Marchenko, V.A.1
Ostrovskii, I.V.2
-
23
-
-
20944442440
-
On the impossibility of simultaneous existence of two Mathieu functions
-
Markovic Z. On the impossibility of simultaneous existence of two Mathieu functions. Proc. Cambridge Philos. Soc. 23 (1926) 203-205
-
(1926)
Proc. Cambridge Philos. Soc.
, vol.23
, pp. 203-205
-
-
Markovic, Z.1
-
24
-
-
84980167496
-
Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points
-
McKean H., and Trubowitz E. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29 (1976) 143-226
-
(1976)
Comm. Pure Appl. Math.
, vol.29
, pp. 143-226
-
-
McKean, H.1
Trubowitz, E.2
-
26
-
-
0030467984
-
New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function
-
Milne S. New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function. Proc. Natl. Acad. Sci. USA 93 (1996) 15004-15008
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 15004-15008
-
-
Milne, S.1
-
27
-
-
0036285878
-
Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions
-
Milne S. Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (2002) 7-149
-
(2002)
Ramanujan J.
, vol.6
, pp. 7-149
-
-
Milne, S.1
-
29
-
-
84980187488
-
The inverse problem for periodic potentials
-
Trubowitz E. The inverse problem for periodic potentials. Comm. Pure Appl. Math. 30 (1977) 321-342
-
(1977)
Comm. Pure Appl. Math.
, vol.30
, pp. 321-342
-
-
Trubowitz, E.1
-
30
-
-
0001218719
-
Quasi-exactly-solvable differential equations
-
Ibragimov N.H. (Ed), CRC Press, Boca Raton, FL (Chapter 12)
-
Turbiner A. Quasi-exactly-solvable differential equations. In: Ibragimov N.H. (Ed). Handbook of Lie Group Analysis of Differential Equations, vol. 3: New Trends in Theoretical Developments and Computational Methods (1996), CRC Press, Boca Raton, FL 329-364 (Chapter 12)
-
(1996)
Handbook of Lie Group Analysis of Differential Equations, vol. 3: New Trends in Theoretical Developments and Computational Methods
, pp. 329-364
-
-
Turbiner, A.1
-
31
-
-
33750513253
-
-
S. Winkler, W. Magnus, The coexistence problem for Hill's equation, Research Report No. BR-26, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, July 1958, pp. 1-91
-
-
-
-
32
-
-
0034348684
-
A proof of the Kac-Wakimoto affine denominator formula for the strange series
-
Zagier D. A proof of the Kac-Wakimoto affine denominator formula for the strange series. Math. Res. Lett. 7 (2000) 597-604
-
(2000)
Math. Res. Lett.
, vol.7
, pp. 597-604
-
-
Zagier, D.1
|