메뉴 건너뛰기




Volumn 43, Issue 2, 2006, Pages 145-154

Propagation of in-plane elastic waves in a composite panel

Author keywords

Composite panel; Spectral Finite Element Method; Wave propagation

Indexed keywords

APPROXIMATION THEORY; COMPOSITE MATERIALS; FINITE ELEMENT METHOD; POLYNOMIALS; PROBLEM SOLVING; STRUCTURAL PANELS; WAVE PROPAGATION;

EID: 33750510237     PISSN: 0168874X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.finel.2006.08.003     Document Type: Article
Times cited : (27)

References (37)
  • 5
    • 0026763705 scopus 로고
    • The role of material orthotropy in fracture specimens for composites
    • Bao C., Ho S., Suo Z., and Fan B. The role of material orthotropy in fracture specimens for composites. Int. J. Solids Struct. 29 (1992) 1105-1116
    • (1992) Int. J. Solids Struct. , vol.29 , pp. 1105-1116
    • Bao, C.1    Ho, S.2    Suo, Z.3    Fan, B.4
  • 6
  • 7
    • 0003217298 scopus 로고
    • Numerical techniques and their use to study wave propagation and scattering: a review
    • Datta S.K., Achenbach J.D., and Rajapakse Y.S. (Eds), North-Holland, Amsterdam
    • Bond L.J. Numerical techniques and their use to study wave propagation and scattering: a review. In: Datta S.K., Achenbach J.D., and Rajapakse Y.S. (Eds). Elastic Waves and Ultrasonic Non-Destructive Evaluation (1990), North-Holland, Amsterdam
    • (1990) Elastic Waves and Ultrasonic Non-Destructive Evaluation
    • Bond, L.J.1
  • 9
    • 0012505534 scopus 로고
    • Numerical calculation of surface waves using new nodal equation
    • Yamawaki H., and Saito T. Numerical calculation of surface waves using new nodal equation. NDT&E Int. 8-9 (1992) 379-389
    • (1992) NDT&E Int. , vol.8-9 , pp. 379-389
    • Yamawaki, H.1    Saito, T.2
  • 11
    • 0016452042 scopus 로고
    • Finite element analysis of frequency spectra for elastic waves guides
    • Talbot R.J., and Przemieniecki J.S. Finite element analysis of frequency spectra for elastic waves guides. Int. J. Solids Struct. 11 (1976) 115-138
    • (1976) Int. J. Solids Struct. , vol.11 , pp. 115-138
    • Talbot, R.J.1    Przemieniecki, J.S.2
  • 12
    • 0021156602 scopus 로고
    • Finite element analysis of Lamb waves scattering in an elastic plate waveguide
    • Koshiba M., Karakida S., and Suzuki M. Finite element analysis of Lamb waves scattering in an elastic plate waveguide. IEEE Trans. Sonics Ultrason. 31 (1984) 18-25
    • (1984) IEEE Trans. Sonics Ultrason. , vol.31 , pp. 18-25
    • Koshiba, M.1    Karakida, S.2    Suzuki, M.3
  • 13
    • 0007832626 scopus 로고
    • Finite element study of Lamb wave interactions with holes and through thickness defects in thin metal plates
    • Thompson D.O., and Chimenti D.E. (Eds)
    • Verdict G.S., Gien P.H., and Burger C.P. Finite element study of Lamb wave interactions with holes and through thickness defects in thin metal plates. In: Thompson D.O., and Chimenti D.E. (Eds). Review of Progress in Quantitative Non-Destructive Evaluation vol. 11 (1992) 97-104
    • (1992) Review of Progress in Quantitative Non-Destructive Evaluation , vol.11 , pp. 97-104
    • Verdict, G.S.1    Gien, P.H.2    Burger, C.P.3
  • 14
    • 44049120860 scopus 로고
    • Optimization of lamb wave inspection techniques
    • Alleyne D.N., and Cawley P. Optimization of lamb wave inspection techniques. NDT&E Int. 25 (1992) 11-22
    • (1992) NDT&E Int. , vol.25 , pp. 11-22
    • Alleyne, D.N.1    Cawley, P.2
  • 16
    • 0029974566 scopus 로고    scopus 로고
    • A boundary element solution for mode conversion study of the edge reflection of Lamb waves
    • Cho Y., and Rose J.L. A boundary element solution for mode conversion study of the edge reflection of Lamb waves. J. Acoust. Soc. of Am. 99 (1996) 2079-2109
    • (1996) J. Acoust. Soc. of Am. , vol.99 , pp. 2079-2109
    • Cho, Y.1    Rose, J.L.2
  • 18
    • 0025703085 scopus 로고
    • Harmonic wave propagation in anisotropic laminated strips
    • Liu G.R., Tani J., Watanabe K., and Ohyoshi T. Harmonic wave propagation in anisotropic laminated strips. J. Sound Vib. 139 (1990) 313-330
    • (1990) J. Sound Vib. , vol.139 , pp. 313-330
    • Liu, G.R.1    Tani, J.2    Watanabe, K.3    Ohyoshi, T.4
  • 19
    • 0029344836 scopus 로고
    • Matrix techniques for modelling of ultrasonic waves in layered media
    • Lowe M.J.S. Matrix techniques for modelling of ultrasonic waves in layered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 (1995) 525-542
    • (1995) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.42 , pp. 525-542
    • Lowe, M.J.S.1
  • 20
    • 0031791469 scopus 로고    scopus 로고
    • A spring model for the simulation of the ultrasonic pulses through imperfect contact interfaces
    • Delsanto P.P., and Mignogna R.B. A spring model for the simulation of the ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104 (1998) 1-8
    • (1998) J. Acoust. Soc. Am. , vol.104 , pp. 1-8
    • Delsanto, P.P.1    Mignogna, R.B.2
  • 21
    • 0033699925 scopus 로고    scopus 로고
    • Numerical simulation and visualization of elastic waves using mass-spring lattice model
    • Yim H., and Sohn Y. Numerical simulation and visualization of elastic waves using mass-spring lattice model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 (2000) 549-558
    • (2000) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.47 , pp. 549-558
    • Yim, H.1    Sohn, Y.2
  • 22
    • 44049118595 scopus 로고
    • Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case
    • Delsanto P.P., Whitecomb T., Chaskelis H.H., and Mignogna R.B. Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion 16 (1992) 65-80
    • (1992) Wave Motion , vol.16 , pp. 65-80
    • Delsanto, P.P.1    Whitecomb, T.2    Chaskelis, H.H.3    Mignogna, R.B.4
  • 23
    • 33744643139 scopus 로고
    • Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case
    • Delsanto P.P., Whitecomb T., Chaskelis H.H., Mignogna R.B., and Kline R.B. Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case. Wave Motion 20 (1994) 295-314
    • (1994) Wave Motion , vol.20 , pp. 295-314
    • Delsanto, P.P.1    Whitecomb, T.2    Chaskelis, H.H.3    Mignogna, R.B.4    Kline, R.B.5
  • 24
    • 0039054213 scopus 로고    scopus 로고
    • Connection machine simulation of ultrasonic wave propagation in materials. III: the three-dimensional case
    • Delsanto P.P., Schechter R.S., and Mignogna R.B. Connection machine simulation of ultrasonic wave propagation in materials. III: the three-dimensional case. Wave Motion 26 (1997) 329-339
    • (1997) Wave Motion , vol.26 , pp. 329-339
    • Delsanto, P.P.1    Schechter, R.S.2    Mignogna, R.B.3
  • 26
    • 48549109395 scopus 로고
    • A spectral element method for fluid dynamics: laminar flow in a channel expansion
    • Patera A.T. A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468-488
    • (1984) J. Comput. Phys. , vol.54 , pp. 468-488
    • Patera, A.T.1
  • 27
    • 0042847151 scopus 로고    scopus 로고
    • The dynamic analysis of cracked Timoshenko beam by the spectral element method
    • Krawczuk M., Palacz M., and Ostachowicz W. The dynamic analysis of cracked Timoshenko beam by the spectral element method. J. Sound Vib. 264 (2003) 1139-1153
    • (2003) J. Sound Vib. , vol.264 , pp. 1139-1153
    • Krawczuk, M.1    Palacz, M.2    Ostachowicz, W.3
  • 28
    • 0037210741 scopus 로고    scopus 로고
    • A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams
    • Mahapatra D.R., and Gopalakrishnan S. A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams. Comput. Struct. 59 (2003) 67-88
    • (2003) Comput. Struct. , vol.59 , pp. 67-88
    • Mahapatra, D.R.1    Gopalakrishnan, S.2
  • 29
    • 0036743745 scopus 로고    scopus 로고
    • Analysis of longitudinal wave propagation in a cracked rod by the spectral element method
    • Palacz M., and Krawczuk M. Analysis of longitudinal wave propagation in a cracked rod by the spectral element method. Comput. Struct. 80 (2002) 1809-1816
    • (2002) Comput. Struct. , vol.80 , pp. 1809-1816
    • Palacz, M.1    Krawczuk, M.2
  • 30
    • 0002847396 scopus 로고
    • A spectral element approach to wave motion in layered solids
    • Rizzi S.A., and Doyle J.F. A spectral element approach to wave motion in layered solids. J. Vib. Acoust. 114 (1992) 569-577
    • (1992) J. Vib. Acoust. , vol.114 , pp. 569-577
    • Rizzi, S.A.1    Doyle, J.F.2
  • 33
    • 0029379993 scopus 로고
    • Spectral collocation methods for one dimensional phase change problems
    • Spall R. Spectral collocation methods for one dimensional phase change problems. Int. J. Heat Mass Transfer 15 (1995) 2743-2748
    • (1995) Int. J. Heat Mass Transfer , vol.15 , pp. 2743-2748
    • Spall, R.1
  • 34
    • 0042535546 scopus 로고    scopus 로고
    • The use of spectral methods in predicting the reflection and transmission of ultrasonic signals through flaws
    • Thompson D.O., and Chimenti D.E. (Eds)
    • Dauksher W., and Emery A.F. The use of spectral methods in predicting the reflection and transmission of ultrasonic signals through flaws. In: Thompson D.O., and Chimenti D.E. (Eds). Review of Progress in Quantitative Non-destructive Evaluation vol. 15 (1996) 97-104
    • (1996) Review of Progress in Quantitative Non-destructive Evaluation , vol.15 , pp. 97-104
    • Dauksher, W.1    Emery, A.F.2
  • 35
    • 0032476189 scopus 로고    scopus 로고
    • 3-D large scale wave propagation modelling by spectral element method on Cray T3E multiprocessor
    • Seriani G. 3-D large scale wave propagation modelling by spectral element method on Cray T3E multiprocessor. Comput. Methods Appl. Mech. Eng. 164 (1998) 235-247
    • (1998) Comput. Methods Appl. Mech. Eng. , vol.164 , pp. 235-247
    • Seriani, G.1
  • 36
    • 33750509902 scopus 로고    scopus 로고
    • 〈http://mathworld.wolfram.com〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.