-
1
-
-
0001295415
-
A reaction-diffusion system arising in modelling man-environment diseases
-
Capasso V., and Kunisch K. A reaction-diffusion system arising in modelling man-environment diseases. Quart. Appl. Math. 46 (1988) 431-449
-
(1988)
Quart. Appl. Math.
, vol.46
, pp. 431-449
-
-
Capasso, V.1
Kunisch, K.2
-
2
-
-
0000355020
-
Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories
-
Day W.A. Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories. Quart. Appl. Math. 40 (1982) 319-330
-
(1982)
Quart. Appl. Math.
, vol.40
, pp. 319-330
-
-
Day, W.A.1
-
3
-
-
45349112919
-
On a class of non-classic parabolic problems
-
Cannon J.R., and Yin H.M. On a class of non-classic parabolic problems. J. Differen. Equat. 79 (1989) 266-288
-
(1989)
J. Differen. Equat.
, vol.79
, pp. 266-288
-
-
Cannon, J.R.1
Yin, H.M.2
-
4
-
-
0003017084
-
A finite difference solutions to an inverse problem determining a control function in a parabolic partial differential equations
-
Wang S., and Lin Y. A finite difference solutions to an inverse problem determining a control function in a parabolic partial differential equations. Inverse Probl. 5 (1989) 631-640
-
(1989)
Inverse Probl.
, vol.5
, pp. 631-640
-
-
Wang, S.1
Lin, Y.2
-
5
-
-
0025545369
-
An implicit finite difference scheme for the diffusion equation subject to mass specification
-
Cannon J.R., Lin Y., and Wang S. An implicit finite difference scheme for the diffusion equation subject to mass specification. Int. J. Eng. Sci. 28 (1990) 573-578
-
(1990)
Int. J. Eng. Sci.
, vol.28
, pp. 573-578
-
-
Cannon, J.R.1
Lin, Y.2
Wang, S.3
-
6
-
-
0033569563
-
Numerical solution of the heat equation with nonlocal boundary conditions
-
Liu Y. Numerical solution of the heat equation with nonlocal boundary conditions. J. Comput. Appl. Math. 110 (1999) 115-127
-
(1999)
J. Comput. Appl. Math.
, vol.110
, pp. 115-127
-
-
Liu, Y.1
-
7
-
-
0038668850
-
A method of solution for the one-dimensional heat equation subject to a nonlocal condition
-
Ang W.T. A method of solution for the one-dimensional heat equation subject to a nonlocal condition. SEA Bull. Math. 26 (2002) 197-203
-
(2002)
SEA Bull. Math.
, vol.26
, pp. 197-203
-
-
Ang, W.T.1
-
8
-
-
33750480430
-
-
Y. Lin, Parabolic partial differential equations subject to non-local boundary conditions, Ph.D. thesis, Washington State University, 1988.
-
-
-
-
9
-
-
0033744321
-
A finite difference method for a non-local boundary value problem for two-dimensional heat equation
-
Dehghan M. A finite difference method for a non-local boundary value problem for two-dimensional heat equation. Appl. Math. Comput. 112 (2000) 133-142
-
(2000)
Appl. Math. Comput.
, vol.112
, pp. 133-142
-
-
Dehghan, M.1
-
10
-
-
0036466644
-
Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition
-
Dehghan M. Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition. Nonlinear Anal. 48 (2002) 637-650
-
(2002)
Nonlinear Anal.
, vol.48
, pp. 637-650
-
-
Dehghan, M.1
-
11
-
-
84948498782
-
The solution of the diffusion equation in two-space variables subject to the specification of mass
-
Cannon J.R., Lin Y., and Matheson A.L. The solution of the diffusion equation in two-space variables subject to the specification of mass. J. Appl. Anal. 50 (1993) 1-19
-
(1993)
J. Appl. Anal.
, vol.50
, pp. 1-19
-
-
Cannon, J.R.1
Lin, Y.2
Matheson, A.L.3
-
12
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135 (1988) 501-544
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
14
-
-
17644393088
-
A decomposition solution for fins with temperature dependent surface heat flux
-
Chang M.-H. A decomposition solution for fins with temperature dependent surface heat flux. Int. J. Heat Mass Transfer 48 (2005) 1819-1824
-
(2005)
Int. J. Heat Mass Transfer
, vol.48
, pp. 1819-1824
-
-
Chang, M.-H.1
-
15
-
-
27944439311
-
The Adomian decomposition method for solving delay differential equations
-
Evans D.J., and Raslan K.R. The Adomian decomposition method for solving delay differential equations. Int. J. Comput. Math. 82 (2005) 49-54
-
(2005)
Int. J. Comput. Math.
, vol.82
, pp. 49-54
-
-
Evans, D.J.1
Raslan, K.R.2
-
16
-
-
14744299273
-
Geodesics, nonlinear normal modes of conservative vibratory systems and decomposition method
-
Zhang X. Geodesics, nonlinear normal modes of conservative vibratory systems and decomposition method. J. Sound Vib. 282 (2005) 971-989
-
(2005)
J. Sound Vib.
, vol.282
, pp. 971-989
-
-
Zhang, X.1
-
17
-
-
33646382814
-
-
I. Hashim, Comments on "A new algorithm for solving classical Blasius equation" by L. Wang, Appl. Math. Comput., in press, doi:10.1016/j.amc.2005.10.016.
-
-
-
-
18
-
-
33646247611
-
-
I. Hashim, Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, J. Comp. Appl. Math., in press, doi:10.1016/j.cam.2005.05.034.
-
-
-
-
19
-
-
33646136008
-
-
I. Hashim, M.S.M. Noorani, M.R.S. Al-Hadidi, Solving the generalized Burgers-Huxley equation using the Adomian decomposition method, Math. Comput. Model., in press, doi:10.1016/j.mcm.2005.08.017.
-
-
-
-
20
-
-
29144534018
-
Accuracy of the Adomian decomposition method applied to the Lorenz system
-
Hashim I., Noorani M.S.M., Ahmad R., Bakar S.A., Ismail E.S., and Zakaria A.M. Accuracy of the Adomian decomposition method applied to the Lorenz system. Chaos Solitons Fract. 28 (2006) 1149-1158
-
(2006)
Chaos Solitons Fract.
, vol.28
, pp. 1149-1158
-
-
Hashim, I.1
Noorani, M.S.M.2
Ahmad, R.3
Bakar, S.A.4
Ismail, E.S.5
Zakaria, A.M.6
-
21
-
-
19144365030
-
Variational iteration method for solving Burger's and coupled Burger's equations
-
Abdou M.A., and Soliman A.A. Variational iteration method for solving Burger's and coupled Burger's equations. J. Comput. Appl. Math. 181 (2005) 245-251
-
(2005)
J. Comput. Appl. Math.
, vol.181
, pp. 245-251
-
-
Abdou, M.A.1
Soliman, A.A.2
-
22
-
-
13544252476
-
An approximation to the solution of hyperbolic equations by Adomian decomposition method and comparison with characteristics method
-
Biazar J., and Ebrahimi H. An approximation to the solution of hyperbolic equations by Adomian decomposition method and comparison with characteristics method. Appl. Math. Comput. 163 (2005) 633-638
-
(2005)
Appl. Math. Comput.
, vol.163
, pp. 633-638
-
-
Biazar, J.1
Ebrahimi, H.2
-
23
-
-
27144546034
-
Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation
-
Geyikli T., and Kaya D. Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation. Appl. Math. Comput. 169 (2005) 146-156
-
(2005)
Appl. Math. Comput.
, vol.169
, pp. 146-156
-
-
Geyikli, T.1
Kaya, D.2
-
24
-
-
31144479330
-
Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method
-
Abbasbandy S. Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method. Appl. Math. Comput. 172 (2006) 485-490
-
(2006)
Appl. Math. Comput.
, vol.172
, pp. 485-490
-
-
Abbasbandy, S.1
-
25
-
-
27144554011
-
A comparison between two different methods for solving KdV-Burgers equation
-
Helal M.A., and Mehanna M.S. A comparison between two different methods for solving KdV-Burgers equation. Chaos Solitons Fract. 28 (2006) 320-326
-
(2006)
Chaos Solitons Fract.
, vol.28
, pp. 320-326
-
-
Helal, M.A.1
Mehanna, M.S.2
-
26
-
-
1542593695
-
The use of Adomian decomposition method for solving the one-dimensional parabolic equation with non-local boundary specifications
-
Dehghan M. The use of Adomian decomposition method for solving the one-dimensional parabolic equation with non-local boundary specifications. Int. J. Comput. Math. 81 (2004) 25-34
-
(2004)
Int. J. Comput. Math.
, vol.81
, pp. 25-34
-
-
Dehghan, M.1
-
27
-
-
24944574717
-
The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure
-
Dehghan M. The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure. Int. J. Comput. Math. 81 (2004) 979-989
-
(2004)
Int. J. Comput. Math.
, vol.81
, pp. 979-989
-
-
Dehghan, M.1
-
28
-
-
4444222587
-
Application of the Adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary specifications
-
Dehghan M. Application of the Adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary specifications. Appl. Math. Comput. 157 (2004) 549-560
-
(2004)
Appl. Math. Comput.
, vol.157
, pp. 549-560
-
-
Dehghan, M.1
-
29
-
-
0003038738
-
Convergence of Adomian's method
-
Cherruault Y. Convergence of Adomian's method. Math. Comput. Model. 14 (1990) 83-86
-
(1990)
Math. Comput. Model.
, vol.14
, pp. 83-86
-
-
Cherruault, Y.1
|