메뉴 건너뛰기




Volumn 181, Issue 2, 2006, Pages 1170-1181

Stability of a class of Runge-Kutta methods for a family of pantograph equations of neutral type

Author keywords

Numerical methods; Pantograph equations; Stability

Indexed keywords

ASYMPTOTIC STABILITY; DIFFERENTIAL EQUATIONS; FUNCTIONS; NUMERICAL METHODS;

EID: 33750459376     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.01.084     Document Type: Article
Times cited : (20)

References (15)
  • 1
    • 0031211264 scopus 로고    scopus 로고
    • Asymptotic stability properties of θ-methods for the pantograph equation
    • Bellen A., Guglielmi N., and Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl. Numer. Math. 24 (1997) 279-293
    • (1997) Appl. Numer. Math. , vol.24 , pp. 279-293
    • Bellen, A.1    Guglielmi, N.2    Torelli, L.3
  • 4
    • 0014322370 scopus 로고
    • Experimental mathematics: an application to retarded ordinary differential equations with infinite lag
    • Brandon Systems Press
    • Feldstein M.A., and Grafton C.K. Experimental mathematics: an application to retarded ordinary differential equations with infinite lag. Proc. 1968 ACM National Conference (1968), Brandon Systems Press 67-71
    • (1968) Proc. 1968 ACM National Conference , pp. 67-71
    • Feldstein, M.A.1    Grafton, C.K.2
  • 6
    • 52649085452 scopus 로고
    • On the generalized pantograph functional-differential equation
    • Iserles A. On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 4 (1993) 1-38
    • (1993) Eur. J. Appl. Math. , vol.4 , pp. 1-38
    • Iserles, A.1
  • 7
    • 0031212296 scopus 로고    scopus 로고
    • Exact and discretized stability of the pantograph equation
    • Iserles A. Exact and discretized stability of the pantograph equation. Appl. Numer. Math. 24 (1997) 295-308
    • (1997) Appl. Numer. Math. , vol.24 , pp. 295-308
    • Iserles, A.1
  • 8
    • 0031081849 scopus 로고    scopus 로고
    • On the neutral functional-differential equations with proportional delays
    • Iserles A., and Liu Y.K. On the neutral functional-differential equations with proportional delays. J. Math. Anal. Appl. 207 (1997) 73-95
    • (1997) J. Math. Anal. Appl. , vol.207 , pp. 73-95
    • Iserles, A.1    Liu, Y.K.2
  • 9
    • 22844457024 scopus 로고    scopus 로고
    • Stability of Runge-Kutta methods for the generalized pantograph equation
    • Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer. Math. 84 (1999) 233-247
    • (1999) Numer. Math. , vol.84 , pp. 233-247
    • Koto, T.1
  • 10
    • 21844488753 scopus 로고
    • Stability of θ-methods for neutral functional-differential equations
    • Liu Y.K. Stability of θ-methods for neutral functional-differential equations. Numer. Math. 70 (1995) 473-485
    • (1995) Numer. Math. , vol.70 , pp. 473-485
    • Liu, Y.K.1
  • 11
    • 0030194116 scopus 로고    scopus 로고
    • On the θ-method for delay differential equations with infinite lag
    • Liu Y.K. On the θ-method for delay differential equations with infinite lag. J. Comput. Appl. Math. 71 (1996) 177-190
    • (1996) J. Comput. Appl. Math. , vol.71 , pp. 177-190
    • Liu, Y.K.1
  • 12
    • 0031212297 scopus 로고    scopus 로고
    • Numerical investigation of the pantograph equation
    • Liu Y.K. Numerical investigation of the pantograph equation. Appl. Numer. Math. 24 (1997) 309-317
    • (1997) Appl. Numer. Math. , vol.24 , pp. 309-317
    • Liu, Y.K.1
  • 13
    • 0242438625 scopus 로고    scopus 로고
    • H-stability of Runge-Kutta methods with general variable stepsize for pantograph equation
    • Xu Y., and Liu M.Z. H-stability of Runge-Kutta methods with general variable stepsize for pantograph equation. Appl. Math. Comput. 148 (2004) 881-892
    • (2004) Appl. Math. Comput. , vol.148 , pp. 881-892
    • Xu, Y.1    Liu, M.Z.2
  • 14
    • 5644220328 scopus 로고    scopus 로고
    • H-stability of Runge-Kutta methods with variable stepsize for system of pantograph equations
    • Xu Y., Zhao J.J., and Liu M.Z. H-stability of Runge-Kutta methods with variable stepsize for system of pantograph equations. J. Comput. Math. 22 (2004) 727-734
    • (2004) J. Comput. Math. , vol.22 , pp. 727-734
    • Xu, Y.1    Zhao, J.J.2    Liu, M.Z.3
  • 15
    • 3142702898 scopus 로고    scopus 로고
    • Boundedness and asymptotic stability of multistep methods for generalized pantograph equations
    • Zhang C.J., and Sun G. Boundedness and asymptotic stability of multistep methods for generalized pantograph equations. J. Comput. Math. 22 (2004) 447-456
    • (2004) J. Comput. Math. , vol.22 , pp. 447-456
    • Zhang, C.J.1    Sun, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.