-
1
-
-
0002885212
-
A rational Landen transformation. The case of degree six
-
G. Boros and V. Moll, A rational Landen transformation. The case of degree six. Contemporary Mathematics, 251 (2000), 83-91.
-
(2000)
Contemporary Mathematics
, vol.251
, pp. 83-91
-
-
Boros, G.1
Moll, V.2
-
2
-
-
0036013526
-
Landen transformation and the integration of rational function
-
G. Boros and V. Moll, Landen transformation and the integration of rational function. Math. Comp., 71 (2001), 649-668.
-
(2001)
Math. Comp.
, vol.71
, pp. 649-668
-
-
Boros, G.1
Moll, V.2
-
4
-
-
0000025755
-
Arithmetische Geometrisches Mittel, (1799)
-
Konigliche Gesellschaft der Wissenschaft, Gottingen. Reprinted by Olms, Hildescheim
-
. [4] K. F. Gauss, Arithmetische Geometrisches Mittel, (1799). In Werke, 3, 361-432. Konigliche Gesellschaft der Wissenschaft, Gottingen. Reprinted by Olms, Hildescheim, 1981.
-
(1981)
Werke
, vol.3
, pp. 361-432
-
-
Gauss, K.F.1
-
5
-
-
0038116787
-
A geometric view of the rational Landen transformation
-
J. Hubbard and V. Moll, A geometric view of the rational Landen transformation. Bull. London Math. Soc., 35 (2003), 293-301.
-
(2003)
Bull. London Math. Soc.
, vol.35
, pp. 293-301
-
-
Hubbard, J.1
Moll, V.2
-
6
-
-
0037677647
-
A disquisition concerning certain fluents, which are assignable by the arcs of the conic sections; wherein are investigated some new and useful theorems for computing such fluents
-
London
-
J. Landen, A disquisition concerning certain fluents, which are assignable by the arcs of the conic sections; wherein are investigated some new and useful theorems for computing such fluents. Philos. Trans. Royal Soc. London, 61 (1771), 298-309.
-
(1971)
Philos. Trans. Royal Soc.
, vol.61
, pp. 298-309
-
-
Landen, J.1
-
7
-
-
0038015564
-
An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom
-
London, textbf
-
J. Landen, An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom. Philos. Trans. Royal Soc. London, textbf65 (1775), 283-289.
-
(1975)
Philos. Trans. Royal Soc.
, vol.65
, pp. 283-289
-
-
Landen, J.1
-
8
-
-
51249170195
-
Counterexample to the Strong Real Jacobian Conjecture
-
Ṡ. I. Pinchuk, Counterexample to the Strong Real Jacobian Conjecture. Math. Z., 217 (1994), 1-4.
-
(1994)
Math. Z.
, vol.217
, pp. 1-4
-
-
Pinchuk, S.I.1
|