메뉴 건너뛰기




Volumn 57, Issue 2, 2007, Pages 353-366

On the existence of harmonic morphisms from certain symmetric spaces

Author keywords

Harmonic morphisms; Minimal submanifolds; Symmetric spaces

Indexed keywords


EID: 33750350408     PISSN: 03930440     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.geomphys.2006.03.008     Document Type: Article
Times cited : (6)

References (14)
  • 1
    • 5644302441 scopus 로고    scopus 로고
    • Flag manifolds and homogeneous CR structures
    • Recent Advances in Lie Theory (Vigo, 2000), Heldermann, Lemgo
    • Alekseevsky D., and Spiro A.F. Flag manifolds and homogeneous CR structures. Recent Advances in Lie Theory (Vigo, 2000). Res. Exp. Math. vol. 25 (2002), Heldermann, Lemgo 3-44
    • (2002) Res. Exp. Math. , vol.25 , pp. 3-44
    • Alekseevsky, D.1    Spiro, A.F.2
  • 2
    • 0002308456 scopus 로고
    • A conservation law for harmonic maps
    • Geometry Symposium Utrecht 1980, Springer
    • Baird P., and Eells J. A conservation law for harmonic maps. Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics vol. 894 (1981), Springer 1-25
    • (1981) Lecture Notes in Mathematics , vol.894 , pp. 1-25
    • Baird, P.1    Eells, J.2
  • 3
    • 0038622622 scopus 로고    scopus 로고
    • Harmonic morphisms between Riemannian manifolds
    • Oxford Univ. Press
    • Baird P., and Wood J.C. Harmonic morphisms between Riemannian manifolds. London Math. Soc. Monogr. No. 29 (2003), Oxford Univ. Press
    • (2003) London Math. Soc. Monogr. , vol.29
    • Baird, P.1    Wood, J.C.2
  • 4
    • 84963037014 scopus 로고
    • Harmonic morphisms, Seifert fibre spaces and conformal foliations
    • Baird P., and Wood J.C. Harmonic morphisms, Seifert fibre spaces and conformal foliations. Proc. London Math. Soc. 64 (1992) 170-197
    • (1992) Proc. London Math. Soc. , vol.64 , pp. 170-197
    • Baird, P.1    Wood, J.C.2
  • 5
    • 0001451390 scopus 로고
    • Harmonic morphisms between Riemannian manifolds
    • Fuglede B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28 (1978) 107-144
    • (1978) Ann. Inst. Fourier , vol.28 , pp. 107-144
    • Fuglede, B.1
  • 6
    • 0030457172 scopus 로고    scopus 로고
    • Harmonic morphisms between semi-Riemannian manifolds
    • Fuglede B. Harmonic morphisms between semi-Riemannian manifolds. Ann. Acad. Sci. Fennicae 21 (1996) 31-50
    • (1996) Ann. Acad. Sci. Fennicae , vol.21 , pp. 31-50
    • Fuglede, B.1
  • 7
    • 0031195570 scopus 로고    scopus 로고
    • On the existence of harmonic morphisms from symmetric spaces of rank one
    • Gudmundsson S. On the existence of harmonic morphisms from symmetric spaces of rank one. Manuscripta Math. 93 (1997) 421-433
    • (1997) Manuscripta Math. , vol.93 , pp. 421-433
    • Gudmundsson, S.1
  • 8
    • 33750302162 scopus 로고    scopus 로고
    • S. Gudmundsson, M. Svensson, Harmonic morphisms from the Grassmannians and their non-compact duals, Ann. Global Anal. Geom. (in press)
  • 9
    • 33750325900 scopus 로고    scopus 로고
    • S. Gudmundsson, M. Svensson, Harmonic morphisms from the compact semisimple Lie groups and their non-compact duals, Differ. Geom. Appl. (in press)
  • 10
    • 0000430059 scopus 로고
    • A mapping of Riemannian manifolds which preserves harmonic functions
    • Ishihara T. A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979) 215-229
    • (1979) J. Math. Kyoto Univ. , vol.19 , pp. 215-229
    • Ishihara, T.1
  • 13
    • 0041912533 scopus 로고    scopus 로고
    • Harmonic morphisms from even-dimensional hyperbolic spaces
    • Svensson M. Harmonic morphisms from even-dimensional hyperbolic spaces. Math. Scand. 92 (2003) 246-260
    • (2003) Math. Scand. , vol.92 , pp. 246-260
    • Svensson, M.1
  • 14
    • 5644259951 scopus 로고    scopus 로고
    • Harmonic morphisms in Hermitian geometry
    • Svensson M. Harmonic morphisms in Hermitian geometry. J. Reine Angew. Math. 575 (2004) 45-68
    • (2004) J. Reine Angew. Math. , vol.575 , pp. 45-68
    • Svensson, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.