메뉴 건너뛰기




Volumn 4213 LNAI, Issue , 2006, Pages 633-640

Incremental aspect models for mining document streams

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; INDEXING (OF INFORMATION); INFORMATION RETRIEVAL; ONLINE SEARCHING; QUERY LANGUAGES;

EID: 33750344334     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11871637_65     Document Type: Conference Paper
Times cited : (6)

References (16)
  • 1
    • 0034795233 scopus 로고    scopus 로고
    • Iterative residual rescaling: An analysis and generalization of LSI
    • September
    • R. K. Ando and L. Lee. Iterative Residual Rescaling: An Analysis and Generalization of LSI. In SIGIR, September 2001.
    • (2001) SIGIR
    • Ando, R.K.1    Lee, L.2
  • 2
    • 8644225400 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested Chinese restaurant process
    • D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical Topic Models and the Nested Chinese Restaurant Process. In NIPS, 2004.
    • (2004) NIPS
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3    Tenenbaum, J.B.4
  • 3
    • 0002879516 scopus 로고
    • A review of reliable maximum likelihood algorithms for semiparametric mixture models
    • D. Böhning. A review of reliable maximum likelihood algorithms for semiparametric mixture models. J. of Stat. Planning and Inference, 47:5-28, 1995.
    • (1995) J. of Stat. Planning and Inference , vol.47 , pp. 5-28
    • Böhning, D.1
  • 4
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Knowledge Discovery and Data Mining, pages 269-274, 2001.
    • (2001) Knowledge Discovery and Data Mining , pp. 269-274
    • Dhillon, I.S.1
  • 5
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by Probabilistic Latent Semantic Analysis. Machine Learning, 42, 2001.
    • (2001) Machine Learning , pp. 42
    • Hofmann, T.1
  • 6
    • 29144497253 scopus 로고    scopus 로고
    • A probabilistic model for on-line document clustering with application to novelty detection
    • Z. G. J. Zhang and Y. Yang. A Probabilistic Model for On-line Document Clustering with Application to Novelty Detection. In NIPS, 2005.
    • (2005) NIPS
    • Zhang, Z.G.J.1    Yang, Y.2
  • 7
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J. Kleinberg. Authoritative sources in a hyperlinked environment. ACM, 46(5):604-632, 1999.
    • (1999) ACM , vol.46 , Issue.5 , pp. 604-632
    • Kleinberg, J.1
  • 8
    • 0345007718 scopus 로고    scopus 로고
    • A survey of emerging trends detection in textual data mining
    • A. Kontostathis et al. A survey of emerging trends detection in textual data mining. In Survey of Text Mining, pages 185-224, 2003.
    • (2003) Survey of Text Mining , pp. 185-224
    • Kontostathis, A.1
  • 9
    • 0001313149 scopus 로고    scopus 로고
    • The stochastic approach for link-structure analysis (salsa)
    • R. Lempel and S. Moran. The stochastic approach for link-structure analysis (salsa). In ACM Tran. on Info. Sys., volume 19, pages 131-160, 2001.
    • (2001) ACM Tran. on Info. Sys. , vol.19 , pp. 131-160
    • Lempel, R.1    Moran, S.2
  • 10
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new Benchmark collection for text categorization research
    • D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A New Benchmark Collection for Text Categorization Research. JMLR, 5:361-397, 2004.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 11
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting Algorithms as Gradient Descent in Function Space. In NIPS, pages 512-518, 2000.
    • (2000) NIPS , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 12
    • 29244457315 scopus 로고    scopus 로고
    • Discovering evolutionary theme patters from text - An exploration of temporal mining
    • Q. Mei and C. Zhai. Discovering evolutionary theme patters from text - an exploration of temporal mining. In Knowledge Discovery and Data Mining, pages 198-207, 2005.
    • (2005) Knowledge Discovery and Data Mining , pp. 198-207
    • Mei, Q.1    Zhai, C.2
  • 13
    • 84862616884 scopus 로고    scopus 로고
    • FastMap, metricMap, and landmark MDS are all nystrom algorithms
    • J. Platt. FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms. In 10th International Workshop on AI and Statistics, pages 261-268, 2005.
    • (2005) 10th International Workshop on AI and Statistics , pp. 261-268
    • Platt, J.1
  • 14
    • 12244263046 scopus 로고    scopus 로고
    • A graph-theoretic approach to extracting storylines from search results
    • U. M. R. Kumar and D. Sivakumar. A graph-theoretic approach to extracting storylines from search results. In Knowledge Discovery and Data Mining, pages 216-225, 2004.
    • (2004) Knowledge Discovery and Data Mining , pp. 216-225
    • Kumar, U.M.R.1    Sivakumar, D.2
  • 15
    • 0037186537 scopus 로고    scopus 로고
    • Looking for lumps: Boosting and bagging for density estimation
    • G. Ridgeway. Looking for lumps: boosting and bagging for density estimation. Computational Statistics and Data Analysis, 38(4):379-392, 1999.
    • (1999) Computational Statistics and Data Analysis , vol.38 , Issue.4 , pp. 379-392
    • Ridgeway, G.1
  • 16
    • 85156234551 scopus 로고    scopus 로고
    • Boosting density estimation
    • S. Rosset and E. Segal. Boosting density estimation. In NIPS, 2002.
    • (2002) NIPS
    • Rosset, S.1    Segal, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.