메뉴 건너뛰기




Volumn 4212 LNAI, Issue , 2006, Pages 497-508

Distributional features for text categorization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; FEATURE EXTRACTION; INFORMATION RETRIEVAL SYSTEMS; WORD PROCESSING;

EID: 33750307963     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11871842_47     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 1
    • 0032264186 scopus 로고    scopus 로고
    • Distributional clustering of words for text classification
    • Melbourne, Australia
    • L. D. Baker and A. K. McCallum. Distributional clustering of words for text classification. In Proceedings of SIGIR-98, Melbourne, Australia, 1998. 96-103.
    • (1998) Proceedings of SIGIR-98 , pp. 96-103
    • Baker, L.D.1    McCallum, A.K.2
  • 3
    • 85029933081 scopus 로고
    • Passage retrieval evidence in document retrieval
    • Dublin, Ireland
    • J. P. Callan. Passage retrieval evidence in document retrieval. In Proceedings of SIGIR-94, Dublin, Ireland, 1994. 302-310.
    • (1994) Proceedings of SIGIR-94 , pp. 302-310
    • Callan, J.P.1
  • 5
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • T. G. Dietterich. Machine learning research: Four current directions, AI Magazine, 1997, 18 (4): 97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 6
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Chemnitz, Germany
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of ECML-98, Chemnitz, Germany, 1998. 137-142.
    • (1998) Proceedings of ECML-98 , pp. 137-142
    • Joachims, T.1
  • 7
    • 85142688646 scopus 로고
    • Newsweeder: Learning to filter netnews
    • Tahoe City, CA
    • K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of ICML-95, Tahoe City, CA, 1995. 331-339.
    • (1995) Proceedings of ICML-95 , pp. 331-339
    • Lang, K.1
  • 8
    • 33750261014 scopus 로고    scopus 로고
    • Reuters-21578 text categorization test colleciton
    • September 26
    • D. Lewis. Reuters-21578 text categorization test colleciton, Distrib. 1.0, September 26, 1997.
    • (1997) Distrib. 1.0
    • Lewis, D.1
  • 9
    • 35048879815 scopus 로고    scopus 로고
    • Complex linguistic features for text classification: A comprehensive study
    • Sunderland, UK
    • A. Moschitti and R. Basili. Complex linguistic features for text classification: A comprehensive study. In Proceedings of ECIR-04, Sunderland, UK, 2004. 181-196.
    • (2004) Proceedings of ECIR-04 , pp. 181-196
    • Moschitti, A.1    Basili, R.2
  • 10
    • 0031630992 scopus 로고    scopus 로고
    • Learning to classify text from labeled and unlabeled documents
    • Madison, WI
    • K. Nigam, A. K. McCallum, S. Thrun and T. M. Mitchell. Learning to classify text from labeled and unlabeled documents. In Proceedings of AAAI-98, Madison, WI, 1998. 792-799.
    • (1998) Proceedings of AAAI-98 , pp. 792-799
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.M.4
  • 11
    • 1942484786 scopus 로고    scopus 로고
    • Tackling the poor assumptions of Naive Bayes text classifiers
    • Washington, DC
    • J. Rennie, L. Shih, J. Teevan and D. Karger. Tackling the poor assumptions of Naive Bayes text classifiers. In Proceedings of ICML-03, Washington, DC, 2003. 616-623.
    • (2003) Proceedings of ICML-03 , pp. 616-623
    • Rennie, J.1    Shih, L.2    Teevan, J.3    Karger, D.4
  • 12
    • 9444250522 scopus 로고    scopus 로고
    • Text categorization using document profiling
    • Cavtat-Dubrovnik, Croatia
    • M. Sauban and B. Pfahringer. Text categorization using document profiling. In Proceedings of PKDD-03, Cavtat-Dubrovnik, Croatia, 2003. 411-422.
    • (2003) Proceedings of PKDD-03 , pp. 411-422
    • Sauban, M.1    Pfahringer, B.2
  • 13
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000, 39 (2-3): 135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 14
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani, Machine learning in automated text categorization. ACM Computing Surverys, 2002, 34 (1): 1-47.
    • (2002) ACM Computing Surverys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 15
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Berkeley, CA
    • Y. Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of SIGIR-99, Berkeley, CA, 1999. 42-49.
    • (1999) Proceedings of SIGIR-99 , pp. 42-49
    • Yang, Y.1    Liu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.