메뉴 건너뛰기




Volumn 51, Issue 2, 2006, Pages 513-525

KNN-kernel density-based clustering for high-dimensional multivariate data

Author keywords

Classification; Clustering; Multivariate data

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER SIMULATION; DATA STRUCTURES; MULTIVARIABLE SYSTEMS;

EID: 33750304851     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2005.10.001     Document Type: Article
Times cited : (119)

References (24)
  • 1
    • 33750282222 scopus 로고    scopus 로고
    • v/d Berg, G.J., 2001. Classificatie CASI-beeld: Een vegetatiekaart van de Klompenwaard. Advies en Onderzoek Remote Sensing en Fotogrammetrie (GAR).
  • 2
    • 0027957343 scopus 로고
    • Hierarchical cluster analysis with stopping rules built on Akaike's information criterion for aerosol particle classification based on electron probe X-ray microanalysis
    • Bondarenko I., Van Malderen H., Treiger B., Van Espen P., and Van Grieken R. Hierarchical cluster analysis with stopping rules built on Akaike's information criterion for aerosol particle classification based on electron probe X-ray microanalysis. Chemom. Intell. Lab. Syst. 22 (1994) 87-95
    • (1994) Chemom. Intell. Lab. Syst. , vol.22 , pp. 87-95
    • Bondarenko, I.1    Van Malderen, H.2    Treiger, B.3    Van Espen, P.4    Van Grieken, R.5
  • 3
    • 33750306805 scopus 로고    scopus 로고
    • Brereton, R.G., 1992. Multivariate Pattern Recognition in Chemometrics, Illustrated by Case Studies. Elsevier, Amsterdam, pp. 179-204.
  • 4
  • 5
    • 0033444876 scopus 로고    scopus 로고
    • Distribution free decomposition of multivariate data
    • Comaniciu D., and Meer P. Distribution free decomposition of multivariate data. Pattern Anal. Appl. 2 (1999) 22-30
    • (1999) Pattern Anal. Appl. , vol.2 , pp. 22-30
    • Comaniciu, D.1    Meer, P.2
  • 6
    • 0041565500 scopus 로고
    • Potential methods in pattern recognition. Part 2 CLUPOT-an unsupervised pattern recognition technique
    • Coomans D., and Massart D.L. Potential methods in pattern recognition. Part 2 CLUPOT-an unsupervised pattern recognition technique. Anal. Chim. Acta 133 (1981) 225-239
    • (1981) Anal. Chim. Acta , vol.133 , pp. 225-239
    • Coomans, D.1    Massart, D.L.2
  • 7
    • 33750334072 scopus 로고    scopus 로고
    • Dasarathy, B.V., 1991. Nearest Neighbour Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos, CA, pp. 1-30.
  • 8
    • 33750312336 scopus 로고    scopus 로고
    • Ertoz, L., Steinbach, M., Kumar, V., 2002. A new shared nearest neighbor clustering algorithm and its applications. In: Proceedings of the Workshop on Clustering High Dimensional Data and its Applications. Arlington, VA, USA, pp. 105-115.
  • 9
    • 33750315883 scopus 로고    scopus 로고
    • Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Knowledge Discovery and Data Mining, pp. 226-231.
  • 10
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • Fukunaga K., and Hostetler L.D. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory 21 (1975) 32-40
    • (1975) IEEE Trans. Inform. Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.D.2
  • 11
    • 33750314109 scopus 로고    scopus 로고
    • Hand, D.J., 1981. Discrimination and Classification. Wiley, New York, pp. 28-29.
  • 12
    • 33750340239 scopus 로고    scopus 로고
    • Hinneburg, A., Keim, D.A., 1998. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the Knowledge Discovery and Data Mining, pp. 58-65.
  • 13
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared nearest neighbors
    • Jarvis R.A., and Patrick E.A. Clustering using a similarity measure based on shared nearest neighbors. IEEE Trans. Comput. C-22 11 (1973) 1025-1034
    • (1973) IEEE Trans. Comput. , vol.C-22 , Issue.11 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 14
    • 0037188461 scopus 로고    scopus 로고
    • Computational analysis of microarray gene expression profiles: clustering, classification, and beyond
    • Liang J., and Kachalo S. Computational analysis of microarray gene expression profiles: clustering, classification, and beyond. Chemom. Intell. Lab. Syst. 62 (2002) 199-216
    • (2002) Chemom. Intell. Lab. Syst. , vol.62 , pp. 199-216
    • Liang, J.1    Kachalo, S.2
  • 15
    • 0001681560 scopus 로고
    • A nonparametric estimate of a multivariate density function
    • Loftsgaarden D.O., and Quesenberry C.P. A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 36 (1965) 1049-1051
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1049-1051
    • Loftsgaarden, D.O.1    Quesenberry, C.P.2
  • 17
    • 6744245580 scopus 로고    scopus 로고
    • A cautionary note on likelihood ratio tests in mixture models
    • Seidel W., Mosler K., and Alker M. A cautionary note on likelihood ratio tests in mixture models. Ann. Inst. Statist. Math. 52 3 (2000) 481-487
    • (2000) Ann. Inst. Statist. Math. , vol.52 , Issue.3 , pp. 481-487
    • Seidel, W.1    Mosler, K.2    Alker, M.3
  • 18
    • 33750334706 scopus 로고    scopus 로고
    • Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, pp. 21-74.
  • 19
    • 0037191137 scopus 로고    scopus 로고
    • Hierarchical clustering extended with visual complements of environmental data set
    • Smolinski A., Walczak B., and Einax J.W. Hierarchical clustering extended with visual complements of environmental data set. Chemom. Intell. Lab. Syst. 64 (2002) 45-54
    • (2002) Chemom. Intell. Lab. Syst. , vol.64 , pp. 45-54
    • Smolinski, A.1    Walczak, B.2    Einax, J.W.3
  • 20
    • 84937429303 scopus 로고    scopus 로고
    • Correlation-based web-document clustering for adaptive web-interface
    • Su Z., Yang Q., Zhang H., Xu X., and Hu Y.-H. Correlation-based web-document clustering for adaptive web-interface. Knowledge Inform. Systems 4 (2002) 151-167
    • (2002) Knowledge Inform. Systems , vol.4 , pp. 151-167
    • Su, Z.1    Yang, Q.2    Zhang, H.3    Xu, X.4    Hu, Y.-H.5
  • 22
    • 21144472623 scopus 로고
    • Variable kernel density estimation
    • Terrell G.R., and Scott D.W. Variable kernel density estimation. Ann. Statist. 20 (1992) 1236-1265
    • (1992) Ann. Statist. , vol.20 , pp. 1236-1265
    • Terrell, G.R.1    Scott, D.W.2
  • 24
    • 33750323465 scopus 로고    scopus 로고
    • Webb, A., 2002. Statistical Pattern Recognition. Wiley, Malvern, UK, pp. 81-122.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.