메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 1489-1496

Standard and averaging reinforcement learning in XCS

Author keywords

Gradient Descent; LCS; RL; XCS

Indexed keywords

APPROXIMATION THEORY; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; FUNCTION EVALUATION; STATE SPACE METHODS;

EID: 33750274156     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1143997.1144241     Document Type: Conference Paper
Times cited : (6)

References (27)
  • 1
    • 85151728371 scopus 로고
    • Residual algorithms: Reinforcement learning with function approximation
    • Morgan Kaufman Publishers, San Francisco, CA., July
    • L. C. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceedings of the Twelfth International Conference on Machine Learning, pages 30-77. Morgan Kaufman Publishers, San Francisco, CA., July 1995.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 30-77
    • Baird, L.C.1
  • 3
    • 85153940465 scopus 로고
    • Generalization in reinforcement learning: Safely approximating the value function
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Cambridge, MA. The MIT Press
    • J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 369-376, Cambridge, MA, 1995. The MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 369-376
    • Boyan, J.A.1    Moore, A.W.2
  • 4
    • 33645283722 scopus 로고    scopus 로고
    • L. Bull and T. Kovacs, editors. Foundations of Learning Classifier Systems. Springer
    • L. Bull and T. Kovacs, editors. Foundations of Learning Classifier Systems, volume 183 of Studies in Fuzziness and Soft Computing. Springer, 2005.
    • (2005) Studies in Fuzziness and Soft Computing , vol.183
  • 5
    • 34249944702 scopus 로고    scopus 로고
    • Gradient descent methods in learning classifier systems
    • Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Avenue, Urbana, IL 61801, Jan.
    • M. Butz, D. G. Goldberg, and P. L. Lanzi. Gradient descent methods in learning classifier systems. Technical Report 2003028, Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Avenue, Urbana, IL 61801, Jan. 2003.
    • (2003) Technical Report 2003028
    • Butz, M.1    Goldberg, D.G.2    Lanzi, P.L.3
  • 6
    • 27344437190 scopus 로고    scopus 로고
    • Gradient descent methods in learning classifier systems: Improving xcs performance in multistep problems
    • Oct.
    • M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient descent methods in learning classifier systems: Improving xcs performance in multistep problems. IEEE Transaction on Evolutionary Computation, 9(5):452-473, Oct. 2005.
    • (2005) IEEE Transaction on Evolutionary Computation , vol.9 , Issue.5 , pp. 452-473
    • Butz, M.V.1    Goldberg, D.E.2    Lanzi, P.L.3
  • 7
    • 26944470971 scopus 로고    scopus 로고
    • An algorithmic description of xcs
    • M. V. Butz and S. W. Wilson. An algorithmic description of xcs. Journal of Soft Computing, 6(3-4): 144-153, 2002.
    • (2002) Journal of Soft Computing , vol.6 , Issue.3-4 , pp. 144-153
    • Butz, M.V.1    Wilson, S.W.2
  • 10
    • 0043144286 scopus 로고    scopus 로고
    • An analysis of generalization in the XCS classifier system
    • P. L. Lanzi. An Analysis of Generalization in the XCS Classifier System. Evolutionary Computation Journal, 7(2):125-149, 1999.
    • (1999) Evolutionary Computation Journal , vol.7 , Issue.2 , pp. 125-149
    • Lanzi, P.L.1
  • 12
    • 27144463204 scopus 로고    scopus 로고
    • Generalization in the xcsf classifier system: Analysis, improvement, and extension
    • Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign
    • P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. Generalization in the xcsf classifier system: Analysis, improvement, and extension. Technical Report 2005012, Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign, 2005.
    • (2005) Technical Report 2005012
    • Lanzi, P.L.1    Loiacono, D.2    Wilson, S.W.3    Goldberg, D.E.4
  • 13
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):161-178, 2002.
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 14
    • 13244294436 scopus 로고    scopus 로고
    • PhD thesis, School of Computer Science. The University of Birmingham, Birmingham, B15 2TT, Dec.
    • S. I. Reynolds. Reinforcement Learning with Exploration. PhD thesis, School of Computer Science. The University of Birmingham, Birmingham, B15 2TT, Dec. 2002.
    • (2002) Reinforcement Learning with Exploration
    • Reynolds, S.I.1
  • 15
    • 85156221438 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. The MIT Press, Cambridge, MA.
    • R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 1038-1044. The MIT Press, Cambridge, MA., 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1038-1044
    • Sutton, R.S.1
  • 18
    • 0031143730 scopus 로고    scopus 로고
    • An analysis of temporal-difference learning with function approximation
    • May
    • J. N. Tsitsiklis and B. V. Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42 (5)-.674-690, May 1997.
    • (1997) IEEE Transactions on Automatic Control , vol.42 , Issue.5 , pp. 674-690
    • Tsitsiklis, J.N.1    Roy, B.V.2
  • 22
    • 27144534351 scopus 로고
    • chapter Neurocomputing: Foundation of Research. The MIT Press, Cambridge
    • B. Widrow and M. E. Hoff. Adaptive Switching Circuits, chapter Neurocomputing: Foundation of Research, pages 126-134. The MIT Press, Cambridge, 1988.
    • (1988) Adaptive Switching Circuits , pp. 126-134
    • Widrow, B.1    Hoff, M.E.2
  • 24
    • 22944460232 scopus 로고    scopus 로고
    • Convergence and divergence in standard and averaging reinforcement learning
    • Springer-Verlag, Berlin, Heidelberg
    • M. Wiering. Convergence and divergence in standard and averaging reinforcement learning. In Proceedings of the 15th European Conference on Machine Learning, volume 3201, pages 477-488. Springer-Verlag, Berlin, Heidelberg, 2004.
    • (2004) Proceedings of the 15th European Conference on Machine Learning , vol.3201 , pp. 477-488
    • Wiering, M.1
  • 25
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149-175, 1995. http://prediction-dynamics.com/.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1
  • 27
    • 27144549349 scopus 로고    scopus 로고
    • Classifiers that approximate functions
    • S. W. Wilson. Classifiers that approximate functions. Journal of Natural Computating, 1(2-3):211-234, 2002.
    • (2002) Journal of Natural Computating , vol.1 , Issue.2-3 , pp. 211-234
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.