메뉴 건너뛰기




Volumn 4030 LNCS, Issue , 2006, Pages 57-69

Using datamining techniques to help metaheuristics: A short survey

Author keywords

[No Author keywords available]

Indexed keywords

HEURISTIC METHODS; INFORMATION ANALYSIS; OPTIMIZATION; SURVEYING;

EID: 33750065387     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11890584_5     Document Type: Conference Paper
Times cited : (52)

References (48)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Morgan Kaufmann, 12-15
    • Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proceeding 20th International Conference Very Large Data Bases, VLDB, pages 487-499. Morgan Kaufmann, 12-15 1994.
    • (1994) Proceeding 20th International Conference Very Large Data Bases, VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0003984832 scopus 로고
    • Population based incremental learning
    • Carnegie Mellon University
    • S. Baluja. Population based incremental learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, 1994. http://www.cs.cmu.edu/afe/cs/ user/baluja/www/techreps.html.
    • (1994) Technical Report , vol.CMU-CS-94-163
    • Baluja, S.1
  • 3
    • 10844281037 scopus 로고    scopus 로고
    • Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method
    • Z.S.H. Chan and N. Kasabov. Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method. In IEEE International Joint Conference on Neural Networks, pages 1669-1674, 2004.
    • (2004) IEEE International Joint Conference on Neural Networks , pp. 1669-1674
    • Chan, Z.S.H.1    Kasabov, N.2
  • 5
    • 0000016367 scopus 로고
    • A new representation and operators for genetic algorithms applied to grouping problems
    • Emanuel Falkenauer. A new representation and operators for genetic algorithms applied to grouping problems. Evolutionary Computation, 2(2): 123-144, 1994.
    • (1994) Evolutionary Computation , vol.2 , Issue.2 , pp. 123-144
    • Falkenauer, E.1
  • 6
    • 24344455071 scopus 로고    scopus 로고
    • A hybrid multi-objective evolutionary algorithm using an inverse neural network
    • A. Gaspar-Cunha and A.S. Vieira. A hybrid multi-objective evolutionary algorithm using an inverse neural network. In Hybrid Metaheuristic, pages 25-30, 2004.
    • (2004) Hybrid Metaheuristic , pp. 25-30
    • Gaspar-Cunha, A.1    Vieira, A.S.2
  • 10
    • 24344455049 scopus 로고    scopus 로고
    • Fusion of coevolutionary ga and machine learning techniques through effective schema extraction
    • Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, San Francisco, California, USA, 7-11 July. Morgan Kaufmann
    • H. Handa, T. Horiuchi, O. Katai, T. Kaneko, T. Konishi, and M. Baba. Fusion of coevolutionary ga and machine learning techniques through effective schema extraction. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), page 764, San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) , pp. 764
    • Handa, H.1    Horiuchi, T.2    Katai, O.3    Kaneko, T.4    Konishi, T.5    Baba, M.6
  • 11
    • 27144451817 scopus 로고    scopus 로고
    • Improvements to the scalability of multiobjective clustering
    • IEEE, editor
    • J. Handl and J. Knowles. Improvements to the scalability of multiobjective clustering. In IEEE, editor, IEEE Congress on Evolutionary Computation, pages 438-445, 2005.
    • (2005) IEEE Congress on Evolutionary Computation , pp. 438-445
    • Handl, J.1    Knowles, J.2
  • 12
    • 0034270513 scopus 로고    scopus 로고
    • Simultaneously applying multiple mutation operators in genetic algorithms
    • T.P. Hong, H. Wang, and W. Chen. Simultaneously applying multiple mutation operators in genetic algorithms. Journal of heuristics, 6:439-455, 2000.
    • (2000) Journal of Heuristics , vol.6 , pp. 439-455
    • Hong, T.P.1    Wang, H.2    Chen, W.3
  • 15
    • 21144433756 scopus 로고    scopus 로고
    • A comprehensive survey of fitness approximation in evolutionary computation
    • Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing Journal, 9(1):3-12, 2005.
    • (2005) Soft Computing Journal , vol.9 , Issue.1 , pp. 3-12
    • Jin, Y.1
  • 16
    • 35048830447 scopus 로고    scopus 로고
    • Reducing fitness evaluations using clustering techniques and neural networks ensembles
    • Genetic and Evolutionary Computation Conference, Springer
    • Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and neural networks ensembles. In Genetic and Evolutionary Computation Conference, volume 3102 of LNCS, pages 688-699. Springer, 2004.
    • (2004) LNCS , vol.3102 , pp. 688-699
    • Jin, Y.1    Sendhoff, B.2
  • 20
    • 84901457113 scopus 로고    scopus 로고
    • Genetic learning from experience
    • IEEE, editor, Australia, Dec. IEEE
    • S. J. Louis. Genetic learning from experience. In IEEE, editor, Congress on Evolutionary Computation (CEC'03), pages 2118 - 2125, Australia, Dec 2003. IEEE.
    • (2003) Congress on Evolutionary Computation (CEC'03) , pp. 2118-2125
    • Louis, S.J.1
  • 22
    • 0033884705 scopus 로고    scopus 로고
    • Learnable evolution model: Evolutionary processes guided by machine learning
    • R.S. Michalski. Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning, 38(1-2):9-40, 2000.
    • (2000) Machine Learning , vol.38 , Issue.1-2 , pp. 9-40
    • Michalski, R.S.1
  • 24
    • 0004118074 scopus 로고
    • Selection of most representative training examples and incremental generation of vl1 hypothesis: The underlying methodology and the descriptions of programs esel and aq11
    • Urbana, Illinois: Department of Computer Science, University of Illinois
    • R.S. Michalski and J.B. Larson. Selection of most representative training examples and incremental generation of vl1 hypothesis: The underlying methodology and the descriptions of programs esel and aq11. Technical Report Report No. 867, Urbana, Illinois: Department of Computer Science, University of Illinois, 1978.
    • (1978) Technical Report Report No. 867 , vol.867
    • Michalski, R.S.1    Larson, J.B.2
  • 26
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions: I. Binary parameters
    • H. Muhlenbein and G. Paass. From recombination of genes to the estimation of distributions: I. binary parameters. Lecture Notes in Computer Science, 1141:178-187, 1996.
    • (1996) Lecture Notes in Computer Science , vol.1141 , pp. 178-187
    • Muhlenbein, H.1    Paass, G.2
  • 27
    • 0001171707 scopus 로고    scopus 로고
    • BOA: The Bayesian optimization algorithm
    • Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Orlando, FL, 13-17. Morgan Kaufmann Publishers, San Fransisco, CA
    • M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimization algorithm. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, volume I, pages 525-532, Orlando, FL, 13-17 1999. Morgan Kaufmann Publishers, San Fransisco, CA.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99 , vol.1 , pp. 525-532
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 29
    • 0033672380 scopus 로고    scopus 로고
    • An incremental-approximate-clustering approach for developing dynamic reduced models for design optimization
    • California, USA, 6-9. IEEE Press
    • K. Rasheed. An incremental-approximate-clustering approach for developing dynamic reduced models for design optimization. In Proceedings of the 2000 Congress on Evolutionary Computation (CEC'OO), pages 986-993, California, USA, 6-9 2000. IEEE Press.
    • (2000) Proceedings of the 2000 Congress on Evolutionary Computation (CEC'OO) , pp. 986-993
    • Rasheed, K.1
  • 30
    • 50149090147 scopus 로고    scopus 로고
    • Using case based learning to improve genetic algorithm based design optimization
    • Thomas Bäck, editor, San Francisco, CA, Morgan Kaufmann
    • K. Rasheed and H. Hirsh. Using case based learning to improve genetic algorithm based design optimization. In Thomas Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. Morgan Kaufmann.
    • (1997) Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97)
    • Rasheed, K.1    Hirsh, H.2
  • 31
    • 18544381254 scopus 로고    scopus 로고
    • Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models
    • L. Darrell Whitley, David E. Gold-berg, Erick Cantú-Paz, Lee Spector, Ian C. Parmee, and Hans-Georg Beyer, editors, Morgan Kaufmann
    • K. Rasheed and H. Hirsh. Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models. In L. Darrell Whitley, David E. Gold-berg, Erick Cantú-Paz, Lee Spector, Ian C. Parmee, and Hans-Georg Beyer, editors, GECCO, pages 628-635. Morgan Kaufmann, 2000.
    • (2000) GECCO , pp. 628-635
    • Rasheed, K.1    Hirsh, H.2
  • 36
    • 29144483998 scopus 로고    scopus 로고
    • Cultural algorithms: Computational modeling of how cultures learn to solve problems: An engineering example
    • R. G. Reynolds and B. Peng. Cultural algorithms: computational modeling of how cultures learn to solve problems: an engineering example. Cybernetics and Systems, 36(8):753-771, 2005.
    • (2005) Cybernetics and Systems , vol.36 , Issue.8 , pp. 753-771
    • Reynolds, R.G.1    Peng, B.2
  • 39
    • 33750319983 scopus 로고    scopus 로고
    • Combining an evolutionary algorithm with data mining to solve a vehicle routing problem
    • to appear
    • H.G. Santos, L.S. Ochi, E.H. Marinho, and L.M.A. Drummond. Combining an evolutionary algorithm with data mining to solve a vehicle routing problem. NEURO-COMPUTING, 2006. (to appear).
    • (2006) NEURO-COMPUTING
    • Santos, H.G.1    Ochi, L.S.2    Marinho, E.H.3    Drummond, L.M.A.4
  • 40
    • 26944465720 scopus 로고    scopus 로고
    • A hybrid GRASP with data mining for the maximum diversity problem
    • LNCS 3636, editor
    • L. Santos, M. Ribeiro, A. Plastino, and S. Martins. A hybrid GRASP with data mining for the maximum diversity problem. In LNCS 3636, editor, Hybrid Metaheuristic, pages 116-128, 2005.
    • (2005) Hybrid Metaheuristic , pp. 116-128
    • Santos, L.1    Ribeiro, M.2    Plastino, A.3    Martins, S.4
  • 42
    • 84958962163 scopus 로고
    • Controlling crossover through inductive learning
    • Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Berlin, Springer
    • M. Sebag and M. Schoenauer. Controlling crossover through inductive learning. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Parallel Problem Solving from Nature - PPSN III, pages 209-218, Berlin, 1994. Springer.
    • (1994) Parallel Problem Solving from Nature - PPSN III , pp. 209-218
    • Sebag, M.1    Schoenauer, M.2
  • 43
    • 0041982423 scopus 로고    scopus 로고
    • Toward civilized evolution: Developing inhibitions
    • Thomas Back, editor, San Francisco, CA, Morgan Kaufmann
    • M. Sebag, M. Schoenauer, and C. Ravise. Toward civilized evolution: Developing inhibitions. In Thomas Back, editor, Proceeding of the Seventh Int. Conf. on Genetic Algorithms, pages 291-298, San Francisco, CA, 1997. Morgan Kaufmann.
    • (1997) Proceeding of the Seventh Int. Conf. on Genetic Algorithms , pp. 291-298
    • Sebag, M.1    Schoenauer, M.2    Ravise, C.3
  • 44
    • 0036723306 scopus 로고    scopus 로고
    • A taxonomy of hybrid metaheuristics
    • Sept.
    • E-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(2):541-564, Sept. 2002.
    • (2002) Journal of Heuristics , vol.8 , Issue.2 , pp. 541-564
    • Talbi, E.-G.1
  • 46
    • 27144506737 scopus 로고    scopus 로고
    • Clustering nominal and numerical data: A new distance concept for a hybrid genetic algorithm
    • Jens Gottlieb and Günther R. Raidl, editors, Evolutionary Computation in Combinatorial Optimization - EvoCOP 2004, Coimbra, Portugal, 5-7 April. Springer Verlag
    • L. Vermeulen-Jourdan, C. Dhaenens, and E-G. Talbi. Clustering nominal and numerical data: A new distance concept for a hybrid genetic algorithm. In Jens Gottlieb and Günther R. Raidl, editors, Evolutionary Computation in Combinatorial Optimization - EvoCOP 2004, volume 3004 of LNCS, pages 220-229, Coimbra, Portugal, 5-7 April 2004. Springer Verlag.
    • (2004) LNCS , vol.3004 , pp. 220-229
    • Vermeulen-Jourdan, L.1    Dhaenens, C.2    Talbi, E.-G.3
  • 47
    • 26944456476 scopus 로고    scopus 로고
    • Partially evaluated genetic algorithm based on fuzzy c-means algorithm
    • LNCS 3242, editor
    • S-H. Yoo and S-B. Cho. Partially evaluated genetic algorithm based on fuzzy c-means algorithm. In LNCS 3242, editor, Parallel Problem Solving From Nature (PPSN), pages 440-449, 2004.
    • (2004) Parallel Problem Solving from Nature (PPSN) , pp. 440-449
    • Yoo, S.-H.1    Cho, S.-B.2
  • 48
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271, 1999.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.