메뉴 건너뛰기




Volumn 4152 LNCS, Issue , 2006, Pages 329-338

Symbolic music genre classification based on note pitch and duration

Author keywords

Content based information retrieval; Duration; Histograms; Music features; Music genre classification; Pitch

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CODES (SYMBOLS); COMPUTER SCIENCE;

EID: 33750052904     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11827252_25     Document Type: Conference Paper
Times cited : (8)

References (6)
  • 2
    • 0036497405 scopus 로고    scopus 로고
    • Problems of music information retrieval in the real world
    • D. Byrd and T. Crawford. Problems of music information retrieval in the real world. Information Processing and Management, 38(2):249-272, 2002.
    • (2002) Information Processing and Management , vol.38 , Issue.2 , pp. 249-272
    • Byrd, D.1    Crawford, T.2
  • 3
    • 25144447915 scopus 로고    scopus 로고
    • Automatic genre classification using large high-level musical feature sets
    • C. McKay and I. Fujinaga. Automatic genre classification using large high-level musical feature sets. In Proceedings of ISMIR, pages 31-38, 2004.
    • (2004) Proceedings of ISMIR , pp. 31-38
    • McKay, C.1    Fujinaga, I.2
  • 5
    • 33744997184 scopus 로고    scopus 로고
    • Pitch histograms in audio and symbolic music information retrieval
    • G. Tzanetakis, A. Ermolinskyi, and P. Cook. Pitch histograms in audio and symbolic music information retrieval. In Proceedings of ISMIR, pages 31-38, 2002.
    • (2002) Proceedings of ISMIR , pp. 31-38
    • Tzanetakis, G.1    Ermolinskyi, A.2    Cook, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.