-
1
-
-
0000236642
-
On chromatic sums and distributed resource allocation
-
A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums and distributed resource allocation. Inf. Comput., 140(2): 183-202, 1998.
-
(1998)
Inf. Comput.
, vol.140
, Issue.2
, pp. 183-202
-
-
Bar-Noy, A.1
Bellare, M.2
Halldórsson, M.M.3
Shachnai, H.4
Tamir, T.5
-
2
-
-
0013152316
-
Sum multicoloring of graphs
-
A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum multicoloring of graphs. J. of Algorithms, 37(2):422-450, 2000.
-
(2000)
J. of Algorithms
, vol.37
, Issue.2
, pp. 422-450
-
-
Bar-Noy, A.1
Halldórsson, M.M.2
Kortsarz, G.3
Salman, R.4
Shachnai, H.5
-
4
-
-
0000301097
-
A greedy heuristic for the set-covering problem
-
V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4:233-235, 1979.
-
(1979)
Mathematics of Operations Research
, vol.4
, pp. 233-235
-
-
Chvátal, V.1
-
6
-
-
21044440739
-
Approximating min sum set cover
-
U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica, 40(4):219-234, 2004.
-
(2004)
Algorithmica
, vol.40
, Issue.4
, pp. 219-234
-
-
Feige, U.1
Lovász, L.2
Tetali, P.3
-
7
-
-
34247872179
-
On chain and antichain families of a partially ordered set
-
A. Frank. On chain and antichain families of a partially ordered set. J. of Combinatorial Theory Series B, 29:176-184, 1980.
-
(1980)
J. of Combinatorial Theory Series B
, vol.29
, pp. 176-184
-
-
Frank, A.1
-
8
-
-
33750077323
-
Improved bounds for sum multicoloring and scheduling dependent jobs with minsum criteria
-
R. Gandhi R., M. M Halldórsson, G. Kortsarz and H. Shachnai, Improved Bounds for Sum Multicoloring and Scheduling Dependent Jobs with Minsum Criteria. In Proc. of WAOA, 2004.
-
(2004)
Proc. of WAOA
-
-
Gandhi, R.1
Halldórsson, M.M.2
Kortsarz, G.3
Shachnai, H.4
-
11
-
-
0242489508
-
Sum coloring interval and fc-claw free graphs with application to scheduling dependent jobs
-
M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and fc-claw free graphs with application to scheduling dependent jobs. Algorithmica, 37(3):187-209, 2003.
-
(2003)
Algorithmica
, vol.37
, Issue.3
, pp. 187-209
-
-
Halldórsson, M.M.1
Kortsarz, G.2
Shachnai, H.3
-
12
-
-
0002980001
-
On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems
-
C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math., vol. 2, 1989, pp. 68-72.
-
(1989)
SIAM J. Discrete Math.
, vol.2
, pp. 68-72
-
-
Hurkens, C.A.J.1
Schrijver, A.2
-
13
-
-
0016349356
-
Approximation algorithms for combinatorial problems
-
D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256-278, 1974.
-
(1974)
Journal of Computer and System Sciences
, vol.9
, pp. 256-278
-
-
Johnson, D.S.1
-
14
-
-
0000203509
-
On the ratio of optimal integral and fractional covers
-
L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383-390, 1975.
-
(1975)
Discrete Mathematics
, vol.13
, pp. 383-390
-
-
Lovász, L.1
-
16
-
-
0000149232
-
On the sum coloring problem on interval graphs
-
S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring problem on interval graphs. Algorithmica, 23(2):109-126, 1999.
-
(1999)
Algorithmica
, vol.23
, Issue.2
, pp. 109-126
-
-
Nicoloso, S.1
Sarrafzadeh, M.2
Song, X.3
-
18
-
-
0002066821
-
Various optimizers for single-stage production
-
W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3:59-66, 1956.
-
(1956)
Naval Research Logistics Quarterly
, vol.3
, pp. 59-66
-
-
Smith, W.E.1
-
19
-
-
0007604993
-
When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?
-
G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. on Computing, 12(1):57-74, 2000.
-
(2000)
INFORMS J. on Computing
, vol.12
, Issue.1
, pp. 57-74
-
-
Woeginger, G.J.1
-
20
-
-
0023123188
-
The maximum k-colorable subgraph problem for chordal graphs
-
M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters, 24(2):133-137, 1987.
-
(1987)
Information Processing Letters
, vol.24
, Issue.2
, pp. 133-137
-
-
Yannakakis, M.1
Gavril, F.2
|