메뉴 건너뛰기




Volumn 20, Issue 1, 2007, Pages 43-47

Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments

Author keywords

Deviating argument; p Laplacian; Periodic solutions; Rayleigh equation; Topological degree

Indexed keywords

DEVIATING ARGUMENTS; P-LAPLACIAN; PERIODIC SOLUTIONS; RAYLEIGH EQUATIONS; TOPOLOGICAL DEGREE;

EID: 33750010096     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2006.02.021     Document Type: Article
Times cited : (31)

References (7)
  • 1
    • 0041791127 scopus 로고
    • ″ (t) + g (t, x (t - τ)) = p (t)
    • ″ (t) + g (t, x (t - τ)) = p (t). Chinese Sci. Bull. 39 3 (1994) 201-203
    • (1994) Chinese Sci. Bull. , vol.39 , Issue.3 , pp. 201-203
    • Huang, X.1    Xiang, Z.2
  • 2
    • 33750011507 scopus 로고    scopus 로고
    • Periodic solutions of the Liénard equation with deviating arguments
    • (in Chinese)
    • Li Y. Periodic solutions of the Liénard equation with deviating arguments. J. Math. Res. Exposition 18 4 (1998) 565-570 (in Chinese)
    • (1998) J. Math. Res. Exposition , vol.18 , Issue.4 , pp. 565-570
    • Li, Y.1
  • 3
    • 0040914517 scopus 로고    scopus 로고
    • A priori bounds for periodic solutions of a delay Rayleigh equation
    • Wang G.Q., and Cheng S.S. A priori bounds for periodic solutions of a delay Rayleigh equation. Appl. Math. Lett. 12 (1999) 41-44
    • (1999) Appl. Math. Lett. , vol.12 , pp. 41-44
    • Wang, G.Q.1    Cheng, S.S.2
  • 4
    • 14744304403 scopus 로고    scopus 로고
    • On existence of periodic solutions of the Rayleigh equation of retarded type
    • Wang G., and Yan J. On existence of periodic solutions of the Rayleigh equation of retarded type. Int. J. Math. Math. Sci. 23 1 (2000) 65-68
    • (2000) Int. J. Math. Math. Sci. , vol.23 , Issue.1 , pp. 65-68
    • Wang, G.1    Yan, J.2
  • 5
    • 0347601659 scopus 로고    scopus 로고
    • Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument
    • Lu S., and Ge W. Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear Anal. 56 (2004) 501-514
    • (2004) Nonlinear Anal. , vol.56 , pp. 501-514
    • Lu, S.1    Ge, W.2
  • 6
    • 0003451932 scopus 로고
    • Springer-Verlag, Berlin, New York
    • Gaines R.E., and Mawhin J. Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics vol. 568 (1977), Springer-Verlag, Berlin, New York
    • (1977) Lecture Notes in Mathematics , vol.568
    • Gaines, R.E.1    Mawhin, J.2
  • 7
    • 0001688579 scopus 로고    scopus 로고
    • Periodic solutions for nonlinear systems with p-Laplacian-like operators
    • Manásevich R., and Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differential Equations 145 (1998) 367-393
    • (1998) J. Differential Equations , vol.145 , pp. 367-393
    • Manásevich, R.1    Mawhin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.