메뉴 건너뛰기




Volumn 36, Issue 4, 2006, Pages 537-541

Improved learning rule of RBFNN for identifying temperature-introduced drift of IFOG

Author keywords

Identification; Interfere fiber optic gyroscope; Radial basis function neural network; Temperature introduced drift

Indexed keywords

INTERFERE FIBER OPTIC GYROSCOPE; NERVE CELL; RADIAL BASIS FUNCTION NEURAL NETWORK; TEMPERATURE INTRODUCED DRIFT;

EID: 33749840311     PISSN: 10010505     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (10)
  • 1
    • 33749836703 scopus 로고    scopus 로고
    • Chinese source
  • 2
    • 0033157521 scopus 로고    scopus 로고
    • Investigation of the temperature compensated method for fiber optic gyros
    • Chinese source
    • Yan Fengping, Lan Huijuan, Jian Shuisheng. Investigation of the temperature compensated method for fiber optic gyros[J]. Acta Optica Sinica, 1999, 19(7): 968-974. (in Chinese)
    • (1999) Acta Optica Sinica , vol.19 , Issue.7 , pp. 968-974
    • Yan, F.1    Lan, H.2    Jian, S.3
  • 3
    • 0034138420 scopus 로고    scopus 로고
    • Identification of temperature drift for FOG using RBF neural networks
    • Chinese source
    • Zhu Rong, Zhang Yanhua, Bao Qilian. Identification of temperature drift for FOG using RBF neural networks[J]. Journal of Shanghai Jiaotong University, 2000, 34(2): 222-225. (in Chinese)
    • (2000) Journal of Shanghai Jiaotong University , vol.34 , Issue.2 , pp. 222-225
    • Zhu, R.1    Zhang, Y.2    Bao, Q.3
  • 4
    • 0036643071 scopus 로고    scopus 로고
    • Guest introduction: Special issue on new methods for model selection and model combination
    • Bengio Yoshua, Schuurmans Dale. Guest introduction: special issue on new methods for model selection and model combination[J]. Machine Learning, 2002, 48(1): 5-7.
    • (2002) Machine Learning , vol.48 , Issue.1 , pp. 5-7
    • Yoshua, B.1    Dale, S.2
  • 5
    • 0036643079 scopus 로고    scopus 로고
    • Metric-based methods for adaptive model selection and regularization
    • Schuurmans D, Southey F. Metric-based methods for adaptive model selection and regularization[J]. Machine Learning, 2002, 48(1): 51-84.
    • (2002) Machine Learning , vol.48 , Issue.1 , pp. 51-84
    • Schuurmans, D.1    Southey, F.2
  • 6
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Murata N, Yoshizawa S, Amari S. Network information criterion-determining the number of hidden units for an artificial neural network model[J]. IEEE Transactions on Neural Networks, 1994, 1(5): 865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.1 , Issue.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 7
    • 0035434818 scopus 로고    scopus 로고
    • Subspace information criterion for model selection
    • Sugiyama M, Ogawa H. Subspace information criterion for model selection[J]. Neural Computation, 2001, 13(8): 1863-1890.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1863-1890
    • Sugiyama, M.1    Ogawa, H.2
  • 8
    • 17644385188 scopus 로고    scopus 로고
    • Online learning algorithm for feedforward neural networks with moving range
    • Chinese source
    • Sheng Shouzhao, Wang Daobo, Huang Xianghua. Online learning algorithm for feedforward neural networks with moving range[J]. Control and Decision, 2005, 20(3): 303-307. (in Chinese)
    • (2005) Control and Decision , vol.20 , Issue.3 , pp. 303-307
    • Sheng, S.1    Wang, D.2    Huang, X.3
  • 9
    • 33749867747 scopus 로고    scopus 로고
    • Chinese source
  • 10
    • 33749836004 scopus 로고    scopus 로고
    • Chinese source


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.