메뉴 건너뛰기




Volumn 5, Issue 3, 2006, Pages 551-559

A comparative study of clustering algorithms

Author keywords

Data clustering; DBSCAN; K means; SOM

Indexed keywords

DATA CLUSTERING; DBSCAN; K-MEANS; SOM;

EID: 33749588863     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2006.551.559     Document Type: Article
Times cited : (12)

References (19)
  • 3
    • 0035789293 scopus 로고    scopus 로고
    • Probabilistic modeling of transactional data and applications to profiling, visualization and prediction
    • San Francisco, CA.
    • Cadez, I., P. Smyth and H. Mannila, 2001. Probabilistic Modeling of Transactional Data and Applications to Profiling, Visualization and Prediction. In proceedings of the 7th ACM SIGKDD, San Francisco, CA., pp: 37-46.
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 37-46
    • Cadez, I.1    Smyth, P.2    Mannila, H.3
  • 4
    • 0026961606 scopus 로고
    • Scatter/gather: A cluster based approach to browsing large document collection
    • Copenhagen, Denmark
    • Cutting, D., J. Carger, J. Pedersen and J. Tukey, 1992. Scatter/Gather: A Cluster Based Approach to Browsing Large Document Collection. In Proceedings of the 15th ACM SIGIR Conference, Copenhagen, Denmark, pp: 318-329.
    • (1992) Proceedings of the 15th ACM SIGIR Conference , pp. 318-329
    • Cutting, D.1    Carger, J.2    Pedersen, J.3    Tukey, J.4
  • 5
    • 0003219068 scopus 로고    scopus 로고
    • Efficient clustering of very large document collections
    • Grossman, R.L., C. Kamath, P. Kegelmeyer, V. Kumar and R.R. Namburu (Eds.), Kluwer Academic Publishers
    • Dhillon, I., J. Fan and Y. Guan, 2001. Efficient Clustering of Very Large Document Collections. In: Grossman, R.L., C. Kamath, P. Kegelmeyer, V. Kumar and R.R. Namburu (Eds.). Data Mining for Scientific and Engineering Applications, Kluwer Academic Publishers.
    • (2001) Data Mining for Scientific and Engineering Applications
    • Dhillon, I.1    Fan, J.2    Guan, Y.3
  • 8
    • 23044519025 scopus 로고    scopus 로고
    • Spatial data mining: Database primitives, algorithms and efficient DBMS support
    • Kluwer Academic Publishers
    • Ester, M., A. Frommelt, H.P. Kreigel and J. Sander, 2000. Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support. Data Mining and Knowledge Discovery, Kluwer Academic Publishers, 4: 193-216.
    • (2000) Data Mining and Knowledge Discovery , vol.4 , pp. 193-216
    • Ester, M.1    Frommelt, A.2    Kreigel, H.P.3    Sander, J.4
  • 9
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • Fayyad, U.M., G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (Eds.), AAAI/MIT
    • Fayyad, U.M., G. Piatetsky-Shapiro and P. Smyth, 1996. From Data Mining to Knowledge Discovery: An Overview. In: Fayyad, U.M., G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, AAAI/MIT., pp: 1-34.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-34
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 10
    • 0000014486 scopus 로고
    • Cluster Analysis of multivariate data: Efficiency versus interpretability of classification
    • Forgey, E., 1965. Cluster Analysis of multivariate data: Efficiency versus interpretability of classification. Biometrics, 21: 768-780.
    • (1965) Biometrics , vol.21 , pp. 768-780
    • Forgey, E.1
  • 13
    • 0001138328 scopus 로고
    • Algorithm AS 136: A K-means clustering algorithm
    • Hartigan, J. and M. Wong, 1979. Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28: 100-108.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 14
    • 0038545418 scopus 로고    scopus 로고
    • Identification of Web user traffic composition using multi-modal clustering and information scent
    • Chicago, IL.
    • Heer, I. and E. Chi, 2001. Identification of Web user traffic composition using multi-modal clustering and information scent. 1st SIAM ICDM, Workshop on Web Mining, Chicago, IL., pp: 51-58.
    • (2001) 1st SIAM ICDM, Workshop on Web Mining , pp. 51-58
    • Heer, I.1    Chi, E.2
  • 16
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T., 1990. The self-organizing map. Proceedings of IEEE, 78: 1464-1480.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 17
    • 22044455069 scopus 로고    scopus 로고
    • Density based clustering in spatial databases: The algorithm gdbscan and its applications
    • Sandar, J., M. Ester, H.P. Kriegel and X. Xu, 1998. Density based clustering in spatial databases: The algorithm gdbscan and its applications. In Data Mining and Knowledge Discovery, 2: 169-194.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 169-194
    • Sandar, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 19
    • 0031701179 scopus 로고    scopus 로고
    • A distribution-based clustering algorithm for mining in large spatial databases
    • Orlando, FL.
    • Xu, X., M. Ester, H.P. Kriegel and J. Sander, 1998. A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings of the 14th ICDE, Orlando, FL., pp: 324-331.
    • (1998) Proceedings of the 14th ICDE , pp. 324-331
    • Xu, X.1    Ester, M.2    Kriegel, H.P.3    Sander, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.