메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 65-75

Robust information-theoretic clustering

Author keywords

Clustering; Data Summarization; Noise robustness; Parameter free Data Mining

Indexed keywords

ALGORITHMS; DATA FLOW ANALYSIS; DATA MINING; INFORMATION ANALYSIS; PARAMETER ESTIMATION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 33749545220     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1150402.1150414     Document Type: Conference Paper
Times cited : (44)

References (22)
  • 1
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional spaces. In SIGMOD Conference, pages 70-81, 2000.
    • (2000) SIGMOD Conference , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD Conference, pages 94-105, 1998.
    • (1998) SIGMOD Conference , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 14544300820 scopus 로고    scopus 로고
    • Computing clusters of correlation connected objects
    • C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation connected objects. In SIGMOD Conference, pages 455-466, 2004.
    • (2004) SIGMOD Conference , pp. 455-466
    • Böhm, C.1    Kailing, K.2    Kröger, P.3    Zimek, A.4
  • 7
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD Conference, 1996.
    • (1996) KDD Conference
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 9
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large databases. In SIGMOD Conference, pages 73-84, 1998.
    • (1998) SIGMOD Conference , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 13
    • 0020848951 scopus 로고
    • A survey of recent advances in hierarchical clustering algorithms
    • F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The Computer Journal, 26(4): 354-359, 1983.
    • (1983) The Computer Journal , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 15
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In Proc. of VLDB Conference., pages 144-155, 1994.
    • (1994) Proc. of VLDB Conference , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 17
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In SIGIR, pages 208-215, 2000.
    • (2000) SIGIR , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 18
    • 34250617022 scopus 로고    scopus 로고
    • The information bottleneck method
    • physics/0004057
    • N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. CoRR, physics/0004057, 2000.
    • (2000) CoRR
    • Tishby, N.1    Pereira, F.C.2    Bialek, W.3
  • 19
    • 29844449492 scopus 로고    scopus 로고
    • CURLER: Finding and visualizing nonlinear correlation clusters
    • A. K. Tung, X. Xu, and B. C. Ooi. CURLER: Finding and visualizing nonlinear correlation clusters. In SIGMOD Conference, pages 467-478, 2005.
    • (2005) SIGMOD Conference , pp. 467-478
    • Tung, A.K.1    Xu, X.2    Ooi, B.C.3
  • 21
    • 84945263084 scopus 로고    scopus 로고
    • K-harmonic means - A spatial clustering algorithm with boosting
    • B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - A spatial clustering algorithm with boosting. TSDM, pages 31-45, 2000.
    • (2000) TSDM , pp. 31-45
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 22
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In SIGMOD Conference, pages 103-114, 1996.
    • (1996) SIGMOD Conference , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.