메뉴 건너뛰기




Volumn 44, Issue 2, 2006, Pages 655-676

Generalized cubic spline fractal interpolation functions

Author keywords

Convergence; Cubic spline fractal interpolation function; Fractal; Fractal interpolation function; Iterated function system; Spline

Indexed keywords

BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; DATA REDUCTION; PROBLEM SOLVING;

EID: 33749510354     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/040611070     Document Type: Article
Times cited : (159)

References (23)
  • 1
    • 0002354550 scopus 로고
    • The calculus of fractal interpolation functions
    • M. F. BARNSLEY AND A. N. HARRINGTON, The calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), pp. 14-34.
    • (1989) J. Approx. Theory , vol.57 , pp. 14-34
    • BARNSLEY, M.F.1    HARRINGTON, A.N.2
  • 6
    • 0001265433 scopus 로고
    • Fractal and self-similarity
    • J. HUTCHINSON, Fractal and self-similarity, Indiana Univ. Math. J., 30 (1981), pp. 713-747.
    • (1981) Indiana Univ. Math. J , vol.30 , pp. 713-747
    • HUTCHINSON, J.1
  • 7
    • 0001213151 scopus 로고
    • Fractal functions and interpolations
    • M. F. BARNSLEY, Fractal functions and interpolations, Constr. Approx., 2 (1986), pp. 303-329.
    • (1986) Constr. Approx , vol.2 , pp. 303-329
    • BARNSLEY, M.F.1
  • 9
    • 0000113294 scopus 로고
    • Fractal modeling of speech signals
    • J. L. VÉHEL, K. DAOUDI, AND E. LUTTON, Fractal modeling of speech signals, Fractals, 2 (1994), pp. 379-382.
    • (1994) Fractals , vol.2 , pp. 379-382
    • VÉHEL, J.L.1    DAOUDI, K.2    LUTTON, E.3
  • 10
    • 0026897973 scopus 로고
    • Using iterated function systems to model discrete sequences
    • D. S. MAZEL AND M. H. HAYES, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process, 40 (1992), pp. 1724-1734.
    • (1992) IEEE Trans. Signal Process , vol.40 , pp. 1724-1734
    • MAZEL, D.S.1    HAYES, M.H.2
  • 20
    • 0039269112 scopus 로고
    • Degree of approximation of spline interpolation
    • A. SHARMA AND A. MEIR, Degree of approximation of spline interpolation, J. Math. Mech., 15 (1966), pp. 759-767.
    • (1966) J. Math. Mech , vol.15 , pp. 759-767
    • SHARMA, A.1    MEIR, A.2
  • 21
    • 0011564042 scopus 로고
    • Error bounds for spline interpolation
    • G. BIRKHOFF AND C. DE BOOR, Error bounds for spline interpolation, J. Math. Mech., 13 (1964), pp. 827-835.
    • (1964) J. Math. Mech , vol.13 , pp. 827-835
    • BIRKHOFF, G.1    DE BOOR, C.2
  • 22
    • 0011570697 scopus 로고
    • Optimal error bounds for cubic spline interpolation
    • C. A. HALL AND W. W. MEYER, Optimal error bounds for cubic spline interpolation, J. Approximation Theory, 16 (1976), pp. 105-122.
    • (1976) J. Approximation Theory , vol.16 , pp. 105-122
    • HALL, C.A.1    MEYER, W.W.2
  • 23
    • 0037989694 scopus 로고    scopus 로고
    • Some results of convergence of cubic spline fractal interpolation functions
    • M. A. NAVASCUÉS AND M. V. SEBASTIÁN, Some results of convergence of cubic spline fractal interpolation functions, Fractals, 11 (2003), pp. 1-7.
    • (2003) Fractals , vol.11 , pp. 1-7
    • NAVASCUÉS, M.A.1    SEBASTIÁN, M.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.