-
1
-
-
0002354550
-
The calculus of fractal interpolation functions
-
M. F. BARNSLEY AND A. N. HARRINGTON, The calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), pp. 14-34.
-
(1989)
J. Approx. Theory
, vol.57
, pp. 14-34
-
-
BARNSLEY, M.F.1
HARRINGTON, A.N.2
-
6
-
-
0001265433
-
Fractal and self-similarity
-
J. HUTCHINSON, Fractal and self-similarity, Indiana Univ. Math. J., 30 (1981), pp. 713-747.
-
(1981)
Indiana Univ. Math. J
, vol.30
, pp. 713-747
-
-
HUTCHINSON, J.1
-
7
-
-
0001213151
-
Fractal functions and interpolations
-
M. F. BARNSLEY, Fractal functions and interpolations, Constr. Approx., 2 (1986), pp. 303-329.
-
(1986)
Constr. Approx
, vol.2
, pp. 303-329
-
-
BARNSLEY, M.F.1
-
9
-
-
0000113294
-
Fractal modeling of speech signals
-
J. L. VÉHEL, K. DAOUDI, AND E. LUTTON, Fractal modeling of speech signals, Fractals, 2 (1994), pp. 379-382.
-
(1994)
Fractals
, vol.2
, pp. 379-382
-
-
VÉHEL, J.L.1
DAOUDI, K.2
LUTTON, E.3
-
10
-
-
0026897973
-
Using iterated function systems to model discrete sequences
-
D. S. MAZEL AND M. H. HAYES, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process, 40 (1992), pp. 1724-1734.
-
(1992)
IEEE Trans. Signal Process
, vol.40
, pp. 1724-1734
-
-
MAZEL, D.S.1
HAYES, M.H.2
-
11
-
-
0004121374
-
-
Academic Press, San Diego
-
P. R. MASSOPUST, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, San Diego, 1994.
-
(1994)
Fractal Functions, Fractal Surfaces, and Wavelets
-
-
MASSOPUST, P.R.1
-
16
-
-
0000006232
-
Hidden variable fractal interpolation functions
-
M. F. BARNSLEY, J. H. ELTON, D. HARDIN, AND P. R. MASSOPUST, Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20 (1989), pp. 1218-1242.
-
(1989)
SIAM J. Math. Anal
, vol.20
, pp. 1218-1242
-
-
BARNSLEY, M.F.1
ELTON, J.H.2
HARDIN, D.3
MASSOPUST, P.R.4
-
17
-
-
0000625037
-
Recurrent iterated function systems
-
M. F. BARNSLEY, J. H. ELTON, AND D. HARDIN, Recurrent iterated function systems, Constr. Approx., 5 (1989), pp. 3-31.
-
(1989)
Constr. Approx
, vol.5
, pp. 3-31
-
-
BARNSLEY, M.F.1
ELTON, J.H.2
HARDIN, D.3
-
18
-
-
33845237187
-
-
Ph.D. thesis, Indian Institute of Technology, Kanpur, India
-
A. K. B. CHAND, A Study on Coalescence and Spline Fractal Interpolation Functions, Ph.D. thesis, Indian Institute of Technology, Kanpur, India, 2004.
-
(2004)
A Study on Coalescence and Spline Fractal Interpolation Functions
-
-
CHAND, A.K.B.1
-
19
-
-
0003883713
-
-
Academic Press, New York
-
J. AHLBERG, E. NILSON, AND J. WALSH, The Theory of Splines and Their Applications, Academic Press, New York, 1967.
-
(1967)
The Theory of Splines and Their Applications
-
-
AHLBERG, J.1
NILSON, E.2
WALSH, J.3
-
20
-
-
0039269112
-
Degree of approximation of spline interpolation
-
A. SHARMA AND A. MEIR, Degree of approximation of spline interpolation, J. Math. Mech., 15 (1966), pp. 759-767.
-
(1966)
J. Math. Mech
, vol.15
, pp. 759-767
-
-
SHARMA, A.1
MEIR, A.2
-
21
-
-
0011564042
-
Error bounds for spline interpolation
-
G. BIRKHOFF AND C. DE BOOR, Error bounds for spline interpolation, J. Math. Mech., 13 (1964), pp. 827-835.
-
(1964)
J. Math. Mech
, vol.13
, pp. 827-835
-
-
BIRKHOFF, G.1
DE BOOR, C.2
-
22
-
-
0011570697
-
Optimal error bounds for cubic spline interpolation
-
C. A. HALL AND W. W. MEYER, Optimal error bounds for cubic spline interpolation, J. Approximation Theory, 16 (1976), pp. 105-122.
-
(1976)
J. Approximation Theory
, vol.16
, pp. 105-122
-
-
HALL, C.A.1
MEYER, W.W.2
-
23
-
-
0037989694
-
Some results of convergence of cubic spline fractal interpolation functions
-
M. A. NAVASCUÉS AND M. V. SEBASTIÁN, Some results of convergence of cubic spline fractal interpolation functions, Fractals, 11 (2003), pp. 1-7.
-
(2003)
Fractals
, vol.11
, pp. 1-7
-
-
NAVASCUÉS, M.A.1
SEBASTIÁN, M.V.2
|