메뉴 건너뛰기




Volumn 74, Issue 1, 2006, Pages 119-154

Uniqueness of the ricci flow on complete noncompact manifolds

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33749319397     PISSN: 0022040X     EISSN: 1945743X     Source Type: Journal    
DOI: 10.4310/jdg/1175266184     Document Type: Article
Times cited : (167)

References (21)
  • 1
    • 84904012108 scopus 로고    scopus 로고
    • A complete proof of the Poincare and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow
    • H.-D. Cao & X.P. Zhu, A complete proof of the Poincare and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10(2) (2006) 165-492.
    • (2006) Asian J. Math , vol.10 , Issue.2 , pp. 165-492
    • Cao, H.-D.1    Zhu, X.P.2
  • 2
    • 84972535477 scopus 로고
    • Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds
    • J. Cheeger, M. Gromov, & M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53.
    • (1982) J. Differential Geom , vol.17 , pp. 15-53
    • Cheeger, J.1    Gromov, M.2    Taylor, M.3
  • 4
    • 0000596501 scopus 로고
    • On the upper estimate of the heat kernel of complete Riemannian manifold
    • S.Y. Cheng, P. Li, & S.-T. Yau, On the upper estimate of the heat kernel of complete Riemannian manifold, Amer. J. Math. 103(5) (1981) 1021-1063.
    • (1981) Amer. J. Math , vol.103 , Issue.5 , pp. 1021-1063
    • Cheng, S.Y.1    Li, P.2    Yau, S.-T.3
  • 5
    • 84972507755 scopus 로고
    • Deforming metrics in the direction of their Ricci tensors
    • D. De Turck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom., 18 (1983) 157-162.
    • (1983) J. Differential Geom. , vol.18 , pp. 157-162
    • De Turck, D.1
  • 6
    • 0002635670 scopus 로고
    • A generalization of Eells-Sampson’s theorem
    • W.Y. Ding & F.H. Lin, A generalization of Eells-Sampson’s theorem, J. Partial Differential Equations, 5(4) (1992) 13-22.
    • (1992) J. Partial Differential Equations , vol.5 , Issue.4 , pp. 13-22
    • Ding, W.Y.1    Lin, F.H.2
  • 7
    • 0001675252 scopus 로고
    • Harmonic mappings of Riemannian manifolds
    • J. Eells & J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964) 109-160.
    • (1964) Amer. J. Math. , vol.86 , pp. 109-160
    • Eells, J.1    Sampson, J.2
  • 8
    • 0002754231 scopus 로고
    • C “approximation of convex, subharmonic and plurisub-harmonic functions
    • R.E. Greene & H. Wu, C “approximation of convex, subharmonic and plurisub-harmonic functions, Ann. Sci. Ec. Norm. Sup. 12 (1979) 47-84.
    • (1979) Ann. Sci. Ec. Norm. Sup , vol.12 , pp. 47-84
    • Greene, R.E.1    Wu, H.2
  • 9
    • 84972513449 scopus 로고
    • Three manifolds with positive Ricci curvature
    • R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255-306.
    • (1982) J. Differential Geom , vol.17 , pp. 255-306
    • Hamilton, R.S.1
  • 10
    • 84972555746 scopus 로고
    • Four manifolds with positive curvature operator
    • R.S. Hamilton, Four manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153-179.
    • (1986) J. Differential Geom , vol.24 , pp. 153-179
    • Hamilton, R.S.1
  • 11
  • 12
    • 0000818415 scopus 로고
    • A compactness property for solution of the Ricci flow
    • R.S. Hamilton, A compactness property for solution of the Ricci flow, Amer. J. Math. 117 (1995) 545-572.
    • (1995) Amer. J. Math , vol.117 , pp. 545-572
    • Hamilton, R.S.1
  • 14
    • 0002914414 scopus 로고    scopus 로고
    • Four manifolds with positive isotropic curvature
    • (or see, Collected Papers on Ricci Flow, Edited by H.-D. Cao, B. Chow, S.C. Chu and S.-T. Yau, International Press, 2002)
    • R.S. Hamilton, Four manifolds with positive isotropic curvature, Comm. in Analysis and Geometry 5 (1997) 1-92; (or see, Collected Papers on Ricci Flow, Edited by H.-D. Cao, B. Chow, S.C. Chu and S.-T. Yau, International Press, 2002).
    • (1997) Comm. In Analysis and Geometry , vol.5 , pp. 1-92
    • Hamilton, R.S.1
  • 16
    • 0002864711 scopus 로고
    • The heat equation and harmonic maps of complete manifolds
    • P. Li & L.F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math., 105 (1991) 1-46.
    • (1991) Invent. Math. , vol.105 , pp. 1-46
    • Li, P.1    Tam, L.F.2
  • 21
    • 84972510530 scopus 로고
    • Deforming the metric on complete Riemannian manifold
    • W.X. Shi, Deforming the metric on complete Riemannian manifold, J. Differential Geometry 30 (1989) 223-301.
    • (1989) J. Differential Geometry , vol.30 , pp. 223-301
    • Shi, W.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.