-
1
-
-
84904012108
-
A complete proof of the Poincare and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow
-
H.-D. Cao & X.P. Zhu, A complete proof of the Poincare and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10(2) (2006) 165-492.
-
(2006)
Asian J. Math
, vol.10
, Issue.2
, pp. 165-492
-
-
Cao, H.-D.1
Zhu, X.P.2
-
2
-
-
84972535477
-
Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds
-
J. Cheeger, M. Gromov, & M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53.
-
(1982)
J. Differential Geom
, vol.17
, pp. 15-53
-
-
Cheeger, J.1
Gromov, M.2
Taylor, M.3
-
4
-
-
0000596501
-
On the upper estimate of the heat kernel of complete Riemannian manifold
-
S.Y. Cheng, P. Li, & S.-T. Yau, On the upper estimate of the heat kernel of complete Riemannian manifold, Amer. J. Math. 103(5) (1981) 1021-1063.
-
(1981)
Amer. J. Math
, vol.103
, Issue.5
, pp. 1021-1063
-
-
Cheng, S.Y.1
Li, P.2
Yau, S.-T.3
-
5
-
-
84972507755
-
Deforming metrics in the direction of their Ricci tensors
-
D. De Turck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom., 18 (1983) 157-162.
-
(1983)
J. Differential Geom.
, vol.18
, pp. 157-162
-
-
De Turck, D.1
-
7
-
-
0001675252
-
Harmonic mappings of Riemannian manifolds
-
J. Eells & J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964) 109-160.
-
(1964)
Amer. J. Math.
, vol.86
, pp. 109-160
-
-
Eells, J.1
Sampson, J.2
-
8
-
-
0002754231
-
C “approximation of convex, subharmonic and plurisub-harmonic functions
-
R.E. Greene & H. Wu, C “approximation of convex, subharmonic and plurisub-harmonic functions, Ann. Sci. Ec. Norm. Sup. 12 (1979) 47-84.
-
(1979)
Ann. Sci. Ec. Norm. Sup
, vol.12
, pp. 47-84
-
-
Greene, R.E.1
Wu, H.2
-
9
-
-
84972513449
-
Three manifolds with positive Ricci curvature
-
R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255-306.
-
(1982)
J. Differential Geom
, vol.17
, pp. 255-306
-
-
Hamilton, R.S.1
-
10
-
-
84972555746
-
Four manifolds with positive curvature operator
-
R.S. Hamilton, Four manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153-179.
-
(1986)
J. Differential Geom
, vol.24
, pp. 153-179
-
-
Hamilton, R.S.1
-
11
-
-
0000872141
-
The Ricci flow on surfaces
-
R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics 71 (1988) 237-261.
-
(1988)
Contemporary Mathematics
, vol.71
, pp. 237-261
-
-
Hamilton, R.S.1
-
12
-
-
0000818415
-
A compactness property for solution of the Ricci flow
-
R.S. Hamilton, A compactness property for solution of the Ricci flow, Amer. J. Math. 117 (1995) 545-572.
-
(1995)
Amer. J. Math
, vol.117
, pp. 545-572
-
-
Hamilton, R.S.1
-
13
-
-
0001825291
-
-
(Cambridge, MA, 1993), International Press, Combridge, MA
-
R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, 7-136, International Press, Combridge, MA, 1995.
-
(1995)
The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry
, vol.2
, pp. 7-136
-
-
Hamilton, R.S.1
-
14
-
-
0002914414
-
Four manifolds with positive isotropic curvature
-
(or see, Collected Papers on Ricci Flow, Edited by H.-D. Cao, B. Chow, S.C. Chu and S.-T. Yau, International Press, 2002)
-
R.S. Hamilton, Four manifolds with positive isotropic curvature, Comm. in Analysis and Geometry 5 (1997) 1-92; (or see, Collected Papers on Ricci Flow, Edited by H.-D. Cao, B. Chow, S.C. Chu and S.-T. Yau, International Press, 2002).
-
(1997)
Comm. In Analysis and Geometry
, vol.5
, pp. 1-92
-
-
Hamilton, R.S.1
-
16
-
-
0002864711
-
The heat equation and harmonic maps of complete manifolds
-
P. Li & L.F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math., 105 (1991) 1-46.
-
(1991)
Invent. Math.
, vol.105
, pp. 1-46
-
-
Li, P.1
Tam, L.F.2
-
21
-
-
84972510530
-
Deforming the metric on complete Riemannian manifold
-
W.X. Shi, Deforming the metric on complete Riemannian manifold, J. Differential Geometry 30 (1989) 223-301.
-
(1989)
J. Differential Geometry
, vol.30
, pp. 223-301
-
-
Shi, W.X.1
|