-
1
-
-
0000100336
-
Period three implies chaos
-
T. Y. Li and J. A. Yorke, "Period three implies chaos," Am. Math. Monthly 82, 985-992 (1975).
-
(1975)
Am. Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.Y.1
Yorke, J.A.2
-
2
-
-
84995342382
-
Various notions of chaos, recent results, open problems
-
J. Smítal, "Various notions of chaos, recent results, open problems," Real. Anal. Exchange 26, 81-86 (2002).
-
(2002)
Real. Anal. Exchange
, vol.26
, pp. 81-86
-
-
Smítal, J.1
-
3
-
-
24944538414
-
Various notions of chaos for discrete dynamical systems
-
G. L. Forti, "Various notions of chaos for discrete dynamical systems," Aequ. Math. 70, 1-13 (2005).
-
(2005)
Aequ. Math.
, vol.70
, pp. 1-13
-
-
Forti, G.L.1
-
4
-
-
27644580002
-
Relations between distributional, Li-Yorke and ω chaos
-
J. L. G. Guirao and M. Lempart, "Relations between distributional, Li-Yorke and ω chaos," Chaos, Solitons Fractals 28, 788-792 (2006).
-
(2006)
Chaos, Solitons Fractals
, vol.28
, pp. 788-792
-
-
Guirao, J.L.G.1
Lempart, M.2
-
5
-
-
24044448591
-
Li-Yorke sensitivity and other concepts of chaos
-
S. F. Kolyada, "Li-Yorke sensitivity and other concepts of chaos," Ukr. Math. J. 56, 1242-1257 (2004).
-
(2004)
Ukr. Math. J.
, vol.56
, pp. 1242-1257
-
-
Kolyada, S.F.1
-
6
-
-
84966254575
-
Measure of chaos and a spectral decomposition of dynamical systems of interval
-
B. Schweizer and J. Smítal, "Measure of chaos and a spectral decomposition of dynamical systems of interval," Trans. Am. Math. Soc. 344, 737-754 (1994).
-
(1994)
Trans. Am. Math. Soc.
, vol.344
, pp. 737-754
-
-
Schweizer, B.1
Smítal, J.2
-
8
-
-
0001743171
-
On Devaneys definition of chaos
-
J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, "On Devaneys definition of chaos," Am. Math. Monthly 99, 332-334 (1992).
-
(1992)
Am. Math. Monthly
, vol.99
, pp. 332-334
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
Davis, G.4
Stacey, P.5
-
10
-
-
0007451878
-
Some aspects of topological transitivity - A survey
-
S. F. Kolyada and L. Snoha, "Some aspects of topological transitivity - a survey," Grazer Math. Ber. 334, 3-35 (1997).
-
(1997)
Grazer Math. Ber.
, vol.334
, pp. 3-35
-
-
Kolyada, S.F.1
Snoha, L.2
-
11
-
-
0039646601
-
Regular periodic decompositions for topologically transitive maps
-
J. Banks, "Regular periodic decompositions for topologically transitive maps," Ergod. Theory Dyn. Syst. 17, 505-529 (1997).
-
(1997)
Ergod. Theory Dyn. Syst.
, vol.17
, pp. 505-529
-
-
Banks, J.1
-
12
-
-
33749362023
-
Topological dynamics of transformations induced on the space of probability measures
-
W. Bauer and K. Sigmund, "Topological dynamics of transformations induced on the space of probability measures," Monatsh. Math. 431, 81-92 (1975).
-
(1975)
Monatsh. Math.
, vol.431
, pp. 81-92
-
-
Bauer, W.1
Sigmund, K.2
-
13
-
-
84968503802
-
ω-chaos and topological entropy
-
S. Li, "ω-chaos and topological entropy," Trans. Am. Math. Soc. 339, 243-249 (1993).
-
(1993)
Trans. Am. Math. Soc.
, vol.339
, pp. 243-249
-
-
Li, S.1
-
14
-
-
84968500701
-
Topological entropy
-
R. Adler, A. Konheim, and J. McAndrew, "Topological entropy," Trans. Am. Math. Soc. 114, 309-319 (1965).
-
(1965)
Trans. Am. Math. Soc.
, vol.114
, pp. 309-319
-
-
Adler, R.1
Konheim, A.2
McAndrew, J.3
-
16
-
-
0003294438
-
An introduction to ergodic theory
-
Springer-Verlag, New York
-
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics (Springer-Verlag, New York, 1982), Vol. 79.
-
(1982)
Graduate Texts in Mathematics
, vol.79
-
-
Walters, P.1
-
17
-
-
0004043484
-
-
CRC Press, Boca Raton
-
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd ed. (CRC Press, Boca Raton, 1999).
-
(1999)
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd Ed.
-
-
Robinson, C.1
-
19
-
-
0036258654
-
A note on Li-Yorke chaos
-
F. Blanchard, E. Glasner, S. F. Kolyada, and A. Maass, "A note on Li-Yorke chaos," J. Reine Angew. Math. 547, 51-68 (2002).
-
(2002)
J. Reine Angew. Math.
, vol.547
, pp. 51-68
-
-
Blanchard, F.1
Glasner, E.2
Kolyada, S.F.3
Maass, A.4
-
20
-
-
0005525599
-
Devaney's chaos or 2-scattering implies Li-Yorke chaos
-
W. Huang and X. Ye, "Devaney's chaos or 2-scattering implies Li-Yorke chaos," Top. Appl. Phys. 117, 259-272 (2002).
-
(2002)
Top. Appl. Phys.
, vol.117
, pp. 259-272
-
-
Huang, W.1
Ye, X.2
-
21
-
-
0242277094
-
Li-Yorke sensitivity
-
E. Akin and S. F. Kolyada, "Li-Yorke sensitivity," Nonlinearity 16, 1421-1433 (2003).
-
(2003)
Nonlinearity
, vol.16
, pp. 1421-1433
-
-
Akin, E.1
Kolyada, S.F.2
-
22
-
-
0034404814
-
Topological complexity
-
F. Blanchard, B. Host, and A. Maass, "Topological complexity," Ergod. Theory Dyn. Syst. 20, 641-662 (2000).
-
(2000)
Ergod. Theory Dyn. Syst.
, vol.20
, pp. 641-662
-
-
Blanchard, F.1
Host, B.2
Maass, A.3
-
23
-
-
13444257255
-
Two kinds of chaos and relations between them
-
M. Lempart, "Two kinds of chaos and relations between them," Acta Math. Univ. Comen. 72, 119-127 (2003).
-
(2003)
Acta Math. Univ. Comen.
, vol.72
, pp. 119-127
-
-
Lempart, M.1
-
24
-
-
0038817819
-
A chaotic, non-mixing subshift
-
A. Crannell, "A chaotic, non-mixing subshift," Discrete Contin. Dyn. Syst. 43, 195-202 (1998).
-
(1998)
Discrete Contin. Dyn. Syst.
, vol.43
, pp. 195-202
-
-
Crannell, A.1
-
25
-
-
17444433508
-
Stroboscopical property in topological dynamics
-
V. J. López and L. Snoha, "Stroboscopical property in topological dynamics," Discrete Contin. Dyn. Syst. 129, 301-316 (2003).
-
(2003)
Discrete Contin. Dyn. Syst.
, vol.129
, pp. 301-316
-
-
López, V.J.1
Snoha, L.2
-
26
-
-
0002384599
-
Dynamics of homeomorphisms on minimal sets generated by triangular mappings
-
G. L. Forti, L. Paganoni, and J. Smítal, "Dynamics of homeomorphisms on minimal sets generated by triangular mappings," Bull. Aust. Math. Soc. 59, 1-20 (1999).
-
(1999)
Bull. Aust. Math. Soc.
, vol.59
, pp. 1-20
-
-
Forti, G.L.1
Paganoni, L.2
Smítal, J.3
-
27
-
-
84968503501
-
On the entropy of uniquely ergodic transformations
-
F. Hahn and Y. Katznelson, "On the entropy of uniquely ergodic transformations," Trans. Am. Math. Soc. 126, 335-360 (1967).
-
(1967)
Trans. Am. Math. Soc.
, vol.126
, pp. 335-360
-
-
Hahn, F.1
Katznelson, Y.2
-
28
-
-
0002105584
-
Minimal subshifts which display Schweizer-Smftal chaos and have zero topological entropy
-
G. Liao and Q. Fan, "Minimal subshifts which display Schweizer-Smftal chaos and have zero topological entropy," Sci. China, Ser. A: Math., Phys., Astron. 41, 33-38 (1998).
-
(1998)
Sci. China, Ser. A: Math., Phys., Astron.
, vol.41
, pp. 33-38
-
-
Liao, G.1
Fan, Q.2
-
29
-
-
0141742887
-
Regular shift invariant sets and Schweizer-Smítal chaos
-
L. Wang and G. Liao, "Regular shift invariant sets and Schweizer-Smítal chaos," Northeast. Math. J. 15, 127-129 (1999).
-
(1999)
Northeast. Math. J.
, vol.15
, pp. 127-129
-
-
Wang, L.1
Liao, G.2
-
31
-
-
18844479656
-
Distributional chaos for triangular maps
-
J. Smítal and M. Štefánková, "Distributional chaos for triangular maps," Chaos, Solitons Fractals 21, 1125-1128 (2004).
-
(2004)
Chaos, Solitons Fractals
, vol.21
, pp. 1125-1128
-
-
Smítal, J.1
Štefánková, M.2
-
32
-
-
0040796598
-
Topological transitivity and ergodic measures
-
B. Weiss, "Topological transitivity and ergodic measures," Math. Syst. Theory 5, 71-75 (1971).
-
(1971)
Math. Syst. Theory
, vol.5
, pp. 71-75
-
-
Weiss, B.1
-
33
-
-
9544238118
-
The three versions of distributional chaos
-
F. Balibrea, J. Smítal, and M. Štefánková, "The three versions of distributional chaos," Chaos, Solitons Fractals 23, 1581-1583 (2005).
-
(2005)
Chaos, Solitons Fractals
, vol.23
, pp. 1581-1583
-
-
Balibrea, F.1
Smítal, J.2
Štefánková, M.3
|