메뉴 건너뛰기




Volumn 104, Issue 4, 2006, Pages 413-444

A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33749241699     PISSN: 0029599X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00211-006-0030-5     Document Type: Article
Times cited : (18)

References (13)
  • 1
    • 30644456591 scopus 로고    scopus 로고
    • Existence and uniqueness for dislocation dynamics with nonnegative velocity
    • Alvarez, O., Cardaliaguet, P., Monneau, R.: Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interface and Boundary 7(4), 415-434 (2005)
    • (2005) Interface and Boundary , vol.7 , Issue.4 , pp. 415-434
    • Alvarez, O.1    Cardaliaguet, P.2    Monneau, R.3
  • 2
    • 33745699475 scopus 로고    scopus 로고
    • Convergence of a first order scheme for a non local eikonal equation
    • Alvarez, O., Carlini, E., Monneau, R., Rouy, E.: Convergence of a first order scheme for a non local eikonal equation. IMACS J. Appl. Numer. Math. 56, 1136-1146 (2006)
    • (2006) IMACS J. Appl. Numer. Math. , vol.56 , pp. 1136-1146
    • Alvarez, O.1    Carlini, E.2    Monneau, R.3    Rouy, E.4
  • 3
    • 1842843706 scopus 로고    scopus 로고
    • Existence et unicité en temps court d'une solution de viscosité discontinue d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation
    • Alvarez, O., Hoch, P., Le Bouar, Y., Monneau, R.: Existence et unicité en temps court d'une solution de viscosité discontinue d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation. Note C.R. Acad. Sci. Paris, Ser. I 338, 679-684 (2004)
    • (2004) Note C.R. Acad. Sci. Paris, Ser. I , vol.338 , pp. 679-684
    • Alvarez, O.1    Hoch, P.2    Le Bouar, Y.3    Monneau, R.4
  • 4
    • 33745727992 scopus 로고    scopus 로고
    • Dislocation dynamics driven by the self-force: Short time existence and uniqueness of the solution
    • Alvarez, O., Hoch, P., Le Bouar, Y., Monneau, R.: Dislocation dynamics driven by the self-force: short time existence and uniqueness of the solution. Arch. Rational Mech. Anal. 181(3), 449-504 (2006)
    • (2006) Arch. Rational Mech. Anal. , vol.181 , Issue.3 , pp. 449-504
    • Alvarez, O.1    Hoch, P.2    Le Bouar, Y.3    Monneau, R.4
  • 6
    • 84966245867 scopus 로고
    • Two approximations of solutions of Hamilton-Jacobi equations
    • Crandall, G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 167, 1-19 (1984)
    • (1984) Math. Comp. , vol.167 , pp. 1-19
    • Crandall, G.1    Lions, P.L.2
  • 7
    • 0022693379 scopus 로고
    • On existence and uniqueness of solutions of Hamilton-Jacobi equations
    • Crandall, M.G., Lions, P.-L.: On existence and uniqueness of solutions of Hamilton-Jacobi equations. Nonlin. Anal. 10, 353-370 (1986)
    • (1986) Nonlin. Anal. , vol.10 , pp. 353-370
    • Crandall, M.G.1    Lions, P.-L.2
  • 8
    • 84968507121 scopus 로고
    • Some properties of viscosity solutions of Hamilton-Jacobi equations
    • Crandall, G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282, 487-502 (1984)
    • (1984) Trans. Am. Math. Soc. , vol.282 , pp. 487-502
    • Crandall, G.1    Evans, L.C.2    Lions, P.L.3
  • 10
    • 44749084234 scopus 로고
    • Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi
    • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi. J. Comput. Phys. 79, 12-49 (1988)
    • (1988) J. Comput. Phys. , vol.79 , pp. 12-49
    • Osher, S.1    Sethian, J.A.2
  • 11
    • 0026880997 scopus 로고
    • A viscosity solutions approach to shape-from-shading
    • Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867-84 (1992)
    • (1992) SIAM J. Numer. Anal. , vol.29 , Issue.3 , pp. 867-884
    • Rouy, E.1    Tourin, A.2
  • 12
    • 0000189454 scopus 로고    scopus 로고
    • The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws
    • Sabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34(6), 2306-2318 (1997)
    • (1997) SIAM J. Numer. Anal. , vol.34 , Issue.6 , pp. 2306-2318
    • Sabac, F.1
  • 13


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.