-
1
-
-
0037405142
-
Efficient numerical approximation of compressible multi-material flow for unstructured meshes
-
Abgrall, R., Nkonga, B., Saurel, R.: Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids. An Int. J. 32, 571-605 (2003)
-
(2003)
Comput. Fluids. An Int. J.
, vol.32
, pp. 571-605
-
-
Abgrall, R.1
Nkonga, B.2
Saurel, R.3
-
2
-
-
0035399783
-
Exact solutions to the Riemann problem of the Shallow Water equations with a bottom step
-
Alcrudo, F., Benkhaldoun, F.: Exact solutions to the Riemann problem of the Shallow Water equations with a bottom step. Comput. Fluids 30(6), 643-671 (2001)
-
(2001)
Comput. Fluids
, vol.30
, Issue.6
, pp. 643-671
-
-
Alcrudo, F.1
Benkhaldoun, F.2
-
3
-
-
33749016293
-
A well-balanced positivity preserving 'second-order' scheme for shallow water flows on unstructured meshes
-
Audusse, E., Bristeau, M.O.: A well-balanced positivity preserving 'second-order' scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206(1), 311-333 (2005)
-
(2005)
J. Comput. Phys.
, vol.206
, Issue.1
, pp. 311-333
-
-
Audusse, E.1
Bristeau, M.O.2
-
4
-
-
26144438389
-
-
FVCA3, HPS., Herbin, R., Krner, D. (eds.)
-
Benkhaldoun, F.: Analysis and validation of a new finite volume scheme for nonhomogeneous systems. FVCA3, HPS., Herbin, R., Krner, D. (eds.), pp. 269-276 (2002)
-
(2002)
Analysis and Validation of a New Finite Volume Scheme for Nonhomogeneous Systems
, pp. 269-276
-
-
Benkhaldoun, F.1
-
5
-
-
15744375324
-
Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources
-
Birkhäuser
-
Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Series: Frontiers in Mathematics, Birkhäuser (2004)
-
(2004)
Series: Frontiers in Mathematics
-
-
Bouchut, F.1
-
6
-
-
20444441693
-
A well-balanced numerical scheme for approximation of the schallo-water equations with topography: The resonance phenomenon
-
Chinnayya, A., Leroux, A.-Y., Seguin, N.: A well-balanced numerical scheme for approximation of the schallo-water equations with topography: the resonance phenomenon. IJFV, http:/averoes.math.univ-paris13.fr, (2004)
-
(2004)
IJFV
-
-
Chinnayya, A.1
Leroux, A.-Y.2
Seguin, N.3
-
7
-
-
0037404907
-
Some approximate Godunov schemes to compute Shallow-Water equations with topography
-
Gallouët, T., Hérard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute Shallow-Water equations with topography. Comput. Fluids 32(4), 479-513 (2003)
-
(2003)
Comput. Fluids
, vol.32
, Issue.4
, pp. 479-513
-
-
Gallouët, T.1
Hérard, J.-M.2
Seguin, N.3
-
8
-
-
0035508896
-
On the numerical solution to two fluid models via a cell centered finite volume method
-
Ghidaglia, J.M., Kumbaro, A., Le Coq, G.: On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B. Fluids 841-867 (2001)
-
(2001)
Eur. J. Mech. B. Fluids
, pp. 841-867
-
-
Ghidaglia, J.M.1
Kumbaro, A.2
Le Coq, G.3
-
9
-
-
0008292479
-
Numerical methods for conservation laws
-
Birkhauser Verlag
-
Leveque, R.J.: Numerical methods for conservation laws. Lectures in Mathematics ETH Zurich, Birkhauser Verlag, p 214 (1992)
-
(1992)
Lectures in Mathematics ETH Zurich
, pp. 214
-
-
Leveque, R.J.1
-
11
-
-
0000857687
-
Numerical benchmark tests
-
Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds.). Hemisphere Publishing Corporation
-
Ransom, V.H.: Numerical benchmark tests. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds.), Multiphase Science and Technology, 3. Hemisphere Publishing Corporation (1987)
-
(1987)
Multiphase Science and Technology
, pp. 3
-
-
Ransom, V.H.1
-
12
-
-
2942757053
-
Approximate Riemann solvers, parameter vectors, and difference schemes
-
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357-372 (1981)
-
(1981)
J. Comput. Phys.
, vol.43
, Issue.2
, pp. 357-372
-
-
Roe, P.L.1
-
13
-
-
0348194970
-
Improved treatment of source terms in upwind schemes for the Shallow Water equations in channels with irregular geometry
-
Vazquez, M.E.: Improved treatment of source terms in upwind schemes for the Shallow Water equations in channels with irregular geometry. J. Comput. Phys. 148, 497-526 (1999)
-
(1999)
J. Comput. Phys.
, vol.148
, pp. 497-526
-
-
Vazquez, M.E.1
-
14
-
-
19044370217
-
High order finite difference WENO schemes with the exact conservation property for the Shallow Water equations
-
Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the Shallow Water equations. J. Comput. Phys. 208(1), 206-227 (2005)
-
(2005)
J. Comput. Phys.
, vol.208
, Issue.1
, pp. 206-227
-
-
Xing, Y.1
Shu, C.-W.2
|