-
5
-
-
33748986018
-
Structural stability and hyperbolicity violation in high-dimensional dynamical systems
-
D. J. Albers and J. C. Sprott, Structural stability and hyperbolicity violation in high-dimensional dynamical systems. Nonlinearity 19: 1801-1847 (2006).
-
(2006)
Nonlinearity
, vol.19
, pp. 1801-1847
-
-
Albers, D.J.1
Sprott, J.C.2
-
6
-
-
0039504237
-
Routes to chaos in neural networks with random weights
-
D. J. Albers, J. C. Sprott and W. D. Dechert, Routes to chaos in neural networks with random weights. Int. J. Bif. Chaos 8: 1463-1478 (1998).
-
(1998)
Int. J. Bif. Chaos
, vol.8
, pp. 1463-1478
-
-
Albers, D.J.1
Sprott, J.C.2
Dechert, W.D.3
-
7
-
-
0015430813
-
Characteristics of random nets of analog neuron-like elements
-
SMC-2 N
-
S. Amari. Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst. Man. Cyb., SMC-2 N 5: 643-657 (1972).
-
(1972)
IEEE Trans. Syst. Man. Cyb.
, vol.5
, pp. 643-657
-
-
Amari, S.1
-
10
-
-
0031534271
-
Circular law
-
Z. D. Bai, Circular law. Ann. Probab. 25: 494-529 (1997).
-
(1997)
Ann. Probab.
, vol.25
, pp. 494-529
-
-
Bai, Z.D.1
-
12
-
-
0001961264
-
Mean-field equations, bifurcation map and route to chaos in discrete time neural networks
-
B. Cessac, B. Doyon, M. Quoy and M. Samuelides, Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D 74: 24-44 (1994).
-
(1994)
Physica D
, vol.74
, pp. 24-44
-
-
Cessac, B.1
Doyon, B.2
Quoy, M.3
Samuelides, M.4
-
13
-
-
13344253863
-
Control of the transition to chaos in neural networks with random connectivity
-
B. Doyon, B. Cessac, M. Quoy and M. Samuelides, Control of the transition to chaos in neural networks with random connectivity. IJBC 3: 279-291 (1993).
-
(1993)
IJBC
, vol.3
, pp. 279-291
-
-
Doyon, B.1
Cessac, B.2
Quoy, M.3
Samuelides, M.4
-
14
-
-
11544324137
-
On bifurcations and chaos in random neural networks
-
B. Doyon, B. Cessac, M. Quoy and M. Samuelides. On bifurcations and chaos in random neural networks. Acta Biotheo. 42: 215-225 (1994).
-
(1994)
Acta Biotheo.
, vol.42
, pp. 215-225
-
-
Doyon, B.1
Cessac, B.2
Quoy, M.3
Samuelides, M.4
-
15
-
-
0031068715
-
The probability that a random gaussian matrix has k real eigenvalues, related distributions, and the circular law
-
A. Edelman, The probability that a random gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60: 203-232 (1997).
-
(1997)
J. Multivariate Anal.
, vol.60
, pp. 203-232
-
-
Edelman, A.1
-
16
-
-
84967770230
-
How many zeros of a random polynomial are real?
-
A. Edelman and E. Kostlan, How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. 32: 1-37 (1995).
-
(1995)
Bull. Amer. Math. Soc.
, vol.32
, pp. 1-37
-
-
Edelman, A.1
Kostlan, E.2
-
17
-
-
84968466626
-
How many eigenvalues of a random matrix are real?
-
A. Edelman, E. Kostlan and M. Shub, How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7: 247-267 (1994).
-
(1994)
J. Am. Math. Soc.
, vol.7
, pp. 247-267
-
-
Edelman, A.1
Kostlan, E.2
Shub, M.3
-
18
-
-
84968482180
-
Polynomial roots from companion matrix eigenvalues
-
A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues. Math. Comput. 64: 763-776 (1995).
-
(1995)
Math. Comput.
, vol.64
, pp. 763-776
-
-
Edelman, A.1
Murakami, H.2
-
19
-
-
0000547548
-
An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system
-
R. Gencay and W. D. Dechert, An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system. Physica D 59: 142-157 (1992).
-
(1992)
Physica D
, vol.59
, pp. 142-157
-
-
Gencay, R.1
Dechert, W.D.2
-
20
-
-
0001703129
-
Statistical ensembles of complex, quaternion and real matrices
-
J. Ginbre, Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6: 440-449 (1965).
-
(1965)
J. Math. Phys.
, vol.6
, pp. 440-449
-
-
Ginbre, J.1
-
21
-
-
0001393752
-
Circular law
-
V. Girko, Circular law. Theory Probab. Appl. 29: 694-706 (1984).
-
(1984)
Theory Probab. Appl.
, vol.29
, pp. 694-706
-
-
Girko, V.1
-
23
-
-
19844383019
-
The circular law: Ten years later
-
V. Girko, The circular law: Ten years later. Random Oper. and Stoch. Eqns. 2: 235-276 (1994).
-
(1994)
Random Oper. and Stoch. Eqns.
, vol.2
, pp. 235-276
-
-
Girko, V.1
-
25
-
-
33845598984
-
The V-density of eigenvalues of non-symmetric random matrices and rigorous proof of the strong circular law
-
V. Girko, The V-density of eigenvalues of non-symmetric random matrices and rigorous proof of the strong circular law. Random Oper. and Stoch. Eqns. 5: 371-406 (1997).
-
(1997)
Random Oper. and Stoch. Eqns.
, vol.5
, pp. 371-406
-
-
Girko, V.1
-
26
-
-
44249096503
-
The strong circular law. Twenty years later. Part I
-
V. Girko, The strong circular law. Twenty years later. Part I. Random Oper. and Stoch. Equ. 12: 49-104 (2004).
-
(2004)
Random Oper. and Stoch. Equ.
, vol.12
, pp. 49-104
-
-
Girko, V.1
-
27
-
-
44249096503
-
The strong circular law. Twenty years later. Part II
-
V. Girko, The strong circular law. Twenty years later. Part II. Random Oper. and Stoch. Equ. 12: 255-312 (2004).
-
(2004)
Random Oper. and Stoch. Equ.
, vol.12
, pp. 255-312
-
-
Girko, V.1
-
28
-
-
33845661409
-
The strong circular law. Twenty years later. Part III
-
V. Girko, The strong circular law. Twenty years later. Part III. Random Oper. and Stoch. Equ. 13: 53-109 (2005).
-
(2005)
Random Oper. and Stoch. Equ.
, vol.13
, pp. 53-109
-
-
Girko, V.1
-
30
-
-
0024880831
-
Mulitlayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchocombe and H. White, Mulitlayer feedforward networks are universal approximators. Neural Networks 2: 359-366 (1989).
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchocombe, M.2
White, H.3
-
31
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
-
K. Hornik,M. Stinchocombe and H.White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3: 551 (1990).
-
(1990)
Neural Netw.
, vol.3
, pp. 551
-
-
Hornik, K.1
Stinchocombe, M.2
White, H.3
-
32
-
-
84967728280
-
Prevalence: A translation invariant "almost everywhere" on infinite-dimensional spaces
-
B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation invariant "almost everywhere" on infinite-dimensional spaces. Bull. Am. Math. Soc. 27: 217-238 (1992).
-
(1992)
Bull. Am. Math. Soc.
, vol.27
, pp. 217-238
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
34
-
-
42549171482
-
On the average number of real roots of a random algebraic equation
-
and 938
-
M. Kac, On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49: 314-320 and 938 (1943).
-
(1943)
Bull. Am. Math. Soc.
, vol.49
, pp. 314-320
-
-
Kac, M.1
-
36
-
-
28844438273
-
Towards spectral theory of Ginibre's ensemble of real random matrices
-
E. Kanzieper and G. Akemann, Towards spectral theory of Ginibre's ensemble of real random matrices. Phys. Rev. Lett. 95: 230201 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 230201
-
-
Kanzieper, E.1
Akemann, G.2
-
37
-
-
51649161951
-
Lyapunov exponents, entropy, and periodic orbits for diffeomorphisms
-
A. Katok, Lyapunov exponents, entropy, and periodic orbits for diffeomorphisms. Publ. Math. I.H.E.S. 51: 137-174 (1980).
-
(1980)
Publ. Math. I.H.E.S.
, vol.51
, pp. 137-174
-
-
Katok, A.1
-
40
-
-
0036016201
-
Large deviations and mean-field threory for asymmetric random recurrent neural networks
-
O. Moynot and M. Samuelides, Large deviations and mean-field threory for asymmetric random recurrent neural networks. Probab. Theory Relat. Fields 123: 41-75 (2002).
-
(2002)
Probab. Theory Relat. Fields
, vol.123
, pp. 41-75
-
-
Moynot, O.1
Samuelides, M.2
-
41
-
-
0011504750
-
On some cases of periodic motions depending on parameters
-
J. Neimark, On some cases of periodic motions depending on parameters. Dokl. Acad. Nauk SSSR 129: 736-739 (1959).
-
(1959)
Dokl. Acad. Nauk SSSR
, vol.129
, pp. 736-739
-
-
Neimark, J.1
-
42
-
-
0000543733
-
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
-
V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Tras. Moscow Math. Soc. 19: 197-221 (1968).
-
(1968)
Tras. Moscow Math. Soc.
, vol.19
, pp. 197-221
-
-
Oseledec, V.I.1
-
43
-
-
3042673723
-
Learning about reality from observations
-
W. Ott and J. Yorke, Learning about reality from observations. SIAM J. Appl. Dyn. Syst., 3: 297-322 (2003).
-
(2003)
SIAM J. Appl. Dyn. Syst.
, vol.3
, pp. 297-322
-
-
Ott, W.1
Yorke, J.2
-
45
-
-
84961291543
-
Lyapunov characteristic exponents and smooth ergodic theory
-
Y. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory. English Transl. Russian Math. Surv. 32: 55-114 (1977).
-
(1977)
English Transl. Russian Math. Surv.
, vol.32
, pp. 55-114
-
-
Pesin, Y.B.1
-
46
-
-
0000320029
-
Characteristic exponents and invariant manifolds in Hilbert space
-
D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math. 115: 243-290 (1982).
-
(1982)
Ann. Math.
, vol.115
, pp. 243-290
-
-
Ruelle, D.1
-
50
-
-
0003351887
-
Structural stability and bifurcation theory
-
J. Sotomayor, Structural stability and bifurcation theory. Dyn. Syst. 549-560 (1973).
-
(1973)
Dyn. Syst.
, pp. 549-560
-
-
Sotomayor, J.1
-
52
-
-
0000779360
-
Detecting atrange attractors in turbulence
-
D. Rand and L. Young (Eds.), Dynamical Systems and Turbulence, Warwick (Springer-Verlag, Berlin)
-
F. Takens, Detecting atrange attractors in turbulence. In D. Rand and L. Young (Eds.), Lecture Notes in Mathematics, vol. 898, pp. 366-381, Dynamical Systems and Turbulence, Warwick (Springer-Verlag, Berlin, 1981).
-
(1981)
Lecture Notes in Mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
|