-
1
-
-
0037331777
-
Resolvent representation for regular differential ideals
-
T. Cluzeau and E. Hubert, Resolvent Representation for Regular Differential Ideals, AAECC, 29, 395-425, 2003.
-
(2003)
AAECC
, vol.29
, pp. 395-425
-
-
Cluzeau, T.1
Hubert, E.2
-
3
-
-
33748963510
-
Manifolds of difference polynomials
-
R.M. Cohn, Manifolds of Difference Polynomials, Trans. of AMS, 64, 133-172, 1948.
-
(1948)
Trans. of AMS
, vol.64
, pp. 133-172
-
-
Cohn, R.M.1
-
5
-
-
0003152142
-
On the parameterization of algebraic curves
-
X.S. Gao and S.C. Chou, On the Parameterization of Algebraic Curves, AAECC, 3, 27-38, 1992.
-
(1992)
AAECC
, vol.3
, pp. 27-38
-
-
Gao, X.S.1
Chou, S.C.2
-
6
-
-
0348050312
-
On the dimension for arbitrary ascending chains
-
X.S. Gao and S.C. Chou, On the Dimension for Arbitrary Ascending Chains, Chinese Bull, of Scis., vol. 38, 396-399, 1993.
-
(1993)
Chinese Bull, of Scis.
, vol.38
, pp. 396-399
-
-
Gao, X.S.1
Chou, S.C.2
-
7
-
-
0002993023
-
On the theory of resolvents and its applications
-
X.S. Gao and S.C. Chou, On the Theory of Resolvents and its Applications, Sys. Sci. and Math. Sci., 12, 17-30, 1999,
-
(1999)
Sys. Sci. and Math. Sci.
, vol.12
, pp. 17-30
-
-
Gao, X.S.1
Chou, S.C.2
-
8
-
-
33748983123
-
A characteristic set method for difference polynomial systems
-
Inter Conf on Poly Sys. Sol., Nov. 24-26, Paris. Submitted to
-
X.S. Gao and Y. Luo, A Characteristic Set Method for Difference Polynomial Systems, Inter Conf on Poly Sys. Sol., Nov. 24-26, Paris, 2004. Submitted to JSC.
-
(2004)
JSC
-
-
Gao, X.S.1
Luo, Y.2
-
9
-
-
85034753633
-
Algebraic solution of systems of polynomial equations using gröbnert bases
-
Springer-Verlag
-
P. Gianni and T. Mora, Algebraic Solution of Systems of Polynomial Equations Using Gröbnert bases, 247-257, LNCS, vol. 356, Springer-Verlag, 1987.
-
(1987)
LNCS
, vol.356
, pp. 247-257
-
-
Gianni, P.1
Mora, T.2
-
10
-
-
0040608781
-
Complexity of quantifier elimination in the theory of ordinary differential equations
-
D. Grigoriev, Complexity of Quantifier Elimination in the Theory of Ordinary Differential Equations, LNCS, vol. 378, 11-25, 1989.
-
(1989)
LNCS
, vol.378
, pp. 11-25
-
-
Grigoriev, D.1
-
11
-
-
0000541791
-
Computing in algebraic extensions
-
(Ed. by B. Buchberger, et al), Springer-Verlag, New York
-
R. Loos, Computing in Algebraic Extensions, in Computer Algebra (Ed. by B. Buchberger, et al), 173-187, Springer-Verlag, New York. 1982.
-
(1982)
Computer Algebra
, pp. 173-187
-
-
Loos, R.1
-
12
-
-
85032877010
-
Solving systems of algebraic equations
-
LNCS No. 358, Springer-Verlag
-
H. Kobayashi, S. Moritsugu and R.W. Hogan, Solving Systems of Algebraic Equations, Proc. of ISSAC-88, pp.139-149, LNCS No. 358, Springer-Verlag, 1988.
-
(1988)
Proc. of ISSAC-88
, pp. 139-149
-
-
Kobayashi, H.1
Moritsugu, S.2
Hogan, R.W.3
-
14
-
-
1542300112
-
Elimination theory for differential difference polynomials
-
ACM Press
-
E.L. Mansfield and A. Szanto, Elimination Theory for Differential Difference Polynomials, Proc. ISSAC 2002, 191-198, ACM Press.
-
Proc. ISSAC 2002
, pp. 191-198
-
-
Mansfield, E.L.1
Szanto, A.2
-
18
-
-
33748961403
-
A method for multivariate polynomial factorization over successive algebraic extension fields
-
D. Wang and D. Lin, A Method for Multivariate Polynomial Factorization over Successive Algebraic Extension Fields, Mathematics and Mathematics Mechanization, 138-172, 2001.
-
(2001)
Mathematics and Mathematics Mechanization
, pp. 138-172
-
-
Wang, D.1
Lin, D.2
-
20
-
-
0004114493
-
-
Science Press, Beijing, ; Springer, Wien
-
W.T. Wu, Basic Principle of Mechanical Theorem Proving in Geometries, Science Press, Beijing, 1984; Springer, Wien, 1994.
-
(1984)
Basic Principle of Mechanical Theorem Proving in Geometries
-
-
Wu, W.T.1
-
21
-
-
33748962276
-
Computing primitive elements of extension fields
-
K. Yokoyama, M. Noro and T. Takeshima, Computing Primitive Elements of Extension Fields, Journal of Symbolic Computation, 8, 553-580, 1989.
-
(1989)
Journal of Symbolic Computation
, vol.8
, pp. 553-580
-
-
Yokoyama, K.1
Noro, M.2
Takeshima, T.3
|