메뉴 건너뛰기




Volumn 87, Issue 3, 2006, Pages 233-244

Leggett-Williams norm-type theorems for coincidences

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33748949064     PISSN: 0003889X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00013-006-1661-6     Document Type: Article
Times cited : (49)

References (15)
  • 2
    • 84972498049 scopus 로고
    • An extension of Tietze's theorem
    • J. DUGUNDJI, An extension of Tietze's theorem. Pacific. J. Math, 1, 353-367 (1951).
    • (1951) Pacific. J. Math , vol.1 , pp. 353-367
    • Dugundji, J.1
  • 3
    • 0000503986 scopus 로고
    • A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations
    • R. E. GAINES and J. SANTANILLA, A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations. Rocky Mountain. J. Math. 12, 669-678 (1982).
    • (1982) Rocky Mountain. J. Math. , vol.12 , pp. 669-678
    • Gaines, R.E.1    Santanilla, J.2
  • 5
    • 0000191729 scopus 로고
    • Some general existence principles in the Carathéodory theory of nonlinear differential systems
    • A. GRANAS, R. B. GUENTHER and J. W. LEE, Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. 70, 153-196 (1991).
    • (1991) J. Math. Pures Appl. , vol.70 , pp. 153-196
    • Granas, A.1    Guenther, R.B.2    Lee, J.W.3
  • 7
    • 0000189561 scopus 로고
    • Existence and monotone method for periodic solutions of first order differential equations
    • V. LAKSHMIKANTHAM and S. LEELA, Existence and monotone method for periodic solutions of first order differential equations. J. Math. Anal. Appl. 91, 237-243 (1983).
    • (1983) J. Math. Anal. Appl. , vol.91 , pp. 237-243
    • Lakshmikantham, V.1    Leela, S.2
  • 8
    • 84989943508 scopus 로고
    • A fixed point theorem with application to an infectious disease model
    • R. W. LEGGETT and L. R. WILLIAMS, A fixed point theorem with application to an infectious disease model. J. Math. Anal. Appl. 76, 91-97 (1980).
    • (1980) J. Math. Anal. Appl. , vol.76 , pp. 91-97
    • Leggett, R.W.1    Williams, L.R.2
  • 9
    • 33748924495 scopus 로고    scopus 로고
    • Two-point boundary value problem for first order implicit differential equations
    • H. LIU and D. JANG, Two-point boundary value problem for first order implicit differential equations. Hiroshima Math. J. 30, 21-27 (2000).
    • (2000) Hiroshima Math. J. , vol.30 , pp. 21-27
    • Liu, H.1    Jang, D.2
  • 10
    • 0000125085 scopus 로고
    • Equivalence theorems for nonlinear operator equations and coincidence degree theory for mappings in locally convex topological vector spaces
    • J. MAWHIN, Equivalence theorems for nonlinear operator equations and coincidence degree theory for mappings in locally convex topological vector spaces. J. Differential Equations 12. 610-636 (1972).
    • (1972) J. Differential Equations , vol.12 , pp. 610-636
    • Mawhin, J.1
  • 12
    • 0008302465 scopus 로고
    • On the solvability of x ∈ Tx+λ Fx in quasinormal cones with T and F k-set contractive
    • W. V. PETRYSHYN, On the solvability of x ∈ Tx+λ Fx in quasinormal cones with T and F k-set contractive. Nonlinear Anal. 5, 585-591 (1981).
    • (1981) Nonlinear Anal. , vol.5 , pp. 585-591
    • Petryshyn, W.V.1
  • 13
    • 84963043516 scopus 로고
    • Existence of fixed points of positive k-set-contractive maps as consequences of suitable boundary conditions
    • W. V. PETRYSHYN, Existence of fixed points of positive k-set-contractive maps as consequences of suitable boundary conditions. J. London Math. Soc. 38(2), 503-512 (1988).
    • (1988) J. London Math. Soc. , vol.38 , Issue.2 , pp. 503-512
    • Petryshyn, W.V.1
  • 14
    • 0008022579 scopus 로고
    • Some coincidence theorems in wedges, cones, and convex sets
    • J. SANTANILLA, Some coincidence theorems in wedges, cones, and convex sets. J. Math. Anal. Appl. 105, 357-371 (1985).
    • (1985) J. Math. Anal. Appl. , vol.105 , pp. 357-371
    • Santanilla, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.