메뉴 건너뛰기




Volumn 16, Issue 8, 2006, Pages 879-884

Sparsity analysis of signals

Author keywords

BSS; Generalized gaussian distribution; ICA; Iso probability density contour; Sparseness

Indexed keywords

GAUSSIAN DISTRIBUTION; INDEPENDENT COMPONENT ANALYSIS; LAPLACE TRANSFORMS; PROBABILITY DENSITY FUNCTION; SIGNAL ANALYSIS; TECHNOLOGY TRANSFER;

EID: 33748921725     PISSN: 10020071     EISSN: None     Source Type: Journal    
DOI: 10.1080/10020070612330083     Document Type: Article
Times cited : (16)

References (15)
  • 1
    • 0001109258 scopus 로고    scopus 로고
    • Blind extraction of singularly mixed source signals
    • Li Y.Q., WangJ. and Zurada J. M. Blind extraction of singularly mixed source signals. IEEETrans. Neural Networks, 2000, 11: 1413-1422.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1413-1422
    • Li, Y.Q.1    Wang, J.2    Zurada, J.M.3
  • 2
    • 0036570624 scopus 로고    scopus 로고
    • Sequential blind extraction of instantaneously mixed sources
    • Li Y.Q. and Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Trans. Signal Processing, 2002, 50(5) : 997-1006.
    • (2002) IEEE Trans. Signal Processing , vol.50 , Issue.5 , pp. 997-1006
    • Li, Y.Q.1    Wang, J.2
  • 3
    • 2442505772 scopus 로고    scopus 로고
    • Self-adaptive blind source separation based on activation fuction adapation
    • Zhang L., Cichocki A. and Amari S. Self-adaptive blind source separation based on activation fuction adapation. IEEE Trans. Neural Networks, 2004, 15 (2) : 233-244.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.2 , pp. 233-244
    • Zhang, L.1    Cichocki, A.2    Amari, S.3
  • 4
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined source separation using sparse representations
    • Bofill P. and Zibulevsky M. Underdetermined source separation using sparse representations. Signal Processing, 2001, 81: 2353-2362
    • (2001) Signal Processing , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 5
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of undetermined mixtures
    • Georgiev P., TheisF. andCichocki A. Sparse component analysis and blind source separation of undetermined mixtures. IEEE Trans. NeuralNetworks, 2005, 16(4):992-996.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.4 , pp. 2-996
    • Georgiev, P.1    Theis, F.2    Cichocki, A.3
  • 7
    • 0032624821 scopus 로고    scopus 로고
    • Blind source separation of more sources than mixtures using overcomplete representation
    • Lee T. W., Lewicki M. S., Girolami M. et al. Blind source separation of more sources than mixtures using overcomplete representation. IE E E S ign d ProcessingLetter, 1999, 6(4):87-90.
    • (1999) IEEE Signal Processing Letter , vol.6 , Issue.4 , pp. 87-90
    • Lee, T.W.1    Lewicki, M.S.2    Girolami, M.3
  • 8
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki M. S. and Sejnowski T. J. Learning overcomplete representations. Neural Computation, 2000, 12: 337-365.
    • (2000) Neural Computation , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 9
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a Signal dictionary
    • Zibulevsky M. and Pearlmutter B. A. Blind source separation by sparse decomposition in a Signal dictionary. Neural Computation, 2001, 13 (4) : 863-882.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 10
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • Li Y.Q., Cichocki A. andAmariS. Analysis of sparse representation and blind source separation. Neural Computation, 2004, 16 (6) : 1193-1234.
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1193-1234
    • Li, Y.Q.1    Cichocki, A.2    Amari, S.3
  • 11
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P. O. Non-negative matrix factorization with sparseness constraints. Journal ofMachineLearningResearch, 2004, 5: 1457-1469
    • (2004) Journal ofMachineLearningResearch , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 15
    • 0041825387 scopus 로고    scopus 로고
    • Sparse separation: Principles and tricks
    • Independent Component Analyses, Wavelets, and Neural Networks
    • Pearlmutter B.A. and Potlurn V.K. Sparse separation: Principles and tricks. In: Proc. SPIE, Vol. 5102, Independent Component Analyses, Wavelets, and Neural Networks, 2003, 14.
    • (2003) In: Proc. SPIE , vol.5102 , pp. 14
    • Pearlmutter, B.A.1    Potlurn, V.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.