메뉴 건너뛰기




Volumn 31, Issue 10, 2006, Pages 1451-1477

Singularities of Bernoulli free boundaries

Author keywords

Bernoulli free boundaries; Boundary regularity; Hilbert transform; Method of moving planes; Stokes waves

Indexed keywords


EID: 33748882598     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605300600635012     Document Type: Article
Times cited : (36)

References (29)
  • 1
    • 0000166670 scopus 로고
    • On the Stokes conjecture for the wave of extreme form
    • Amick, C. J., Fraenkel, L. E., Toland, J. F. (1982). On the Stokes conjecture for the wave of extreme form. Acta Math. 148:193-214.
    • (1982) Acta Math. , vol.148 , pp. 193-214
    • Amick, C.J.1    Fraenkel, L.E.2    Toland, J.F.3
  • 3
    • 1242299759 scopus 로고    scopus 로고
    • Symmetry of steady periodic surface water waves with vorticity
    • Constantin, A., Escher, J. (2004a). Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498:171-181.
    • (2004) J. Fluid Mech. , vol.498 , pp. 171-181
    • Constantin, A.1    Escher, J.2
  • 4
    • 17044390729 scopus 로고    scopus 로고
    • Symmetry of steady deep-water waves with vorticity
    • Constantin, A., Escher, J. (2004b). Symmetry of steady deep-water waves with vorticity. European J. Appl. Math. 15:755-768.
    • (2004) European J. Appl. Math. , vol.15 , pp. 755-768
    • Constantin, A.1    Escher, J.2
  • 5
    • 1242319077 scopus 로고    scopus 로고
    • Exact steady periodic water waves with vorticity
    • Constantin, A., Strauss, W. (2004). Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57:481-527.
    • (2004) Comm. Pure Appl. Math. , vol.57 , pp. 481-527
    • Constantin, A.1    Strauss, W.2
  • 6
    • 0001285865 scopus 로고
    • Symmetry of solitary waves
    • Craig, W., Sternberg, P. (1988). Symmetry of solitary waves. Comm. PDE 13:603-633.
    • (1988) Comm. PDE , vol.13 , pp. 603-633
    • Craig, W.1    Sternberg, P.2
  • 8
    • 16244371282 scopus 로고    scopus 로고
    • Uniqueness of steady symmetric deep-water waves with vorticity
    • Ehrnström, M. (2005). Uniqueness of steady symmetric deep-water waves with vorticity. J. Nonlinear Math. Phys. 12:27-30.
    • (2005) J. Nonlinear Math. Phys. , vol.12 , pp. 27-30
    • Ehrnström, M.1
  • 10
    • 33748860886 scopus 로고    scopus 로고
    • A constructive existence proof for the extreme Stokes wave
    • In press
    • Fraenkel, L. E. (2006). A constructive existence proof for the extreme Stokes wave. Arch. Rational Mech. Anal. In press.
    • (2006) Arch. Rational Mech. Anal.
    • Fraenkel, L.E.1
  • 11
    • 51249168956 scopus 로고
    • Surface waves of finite depth
    • Garabedian, P. (1965). Surface waves of finite depth. J. d'Anal. Math. 14:161-169.
    • (1965) J. D'Anal. Math. , vol.14 , pp. 161-169
    • Garabedian, P.1
  • 13
    • 4243174643 scopus 로고    scopus 로고
    • A uniqueness result for periodic traveling waves in water of finite depth
    • Kalisch, H. (2004). A uniqueness result for periodic traveling waves in water of finite depth. Nonlinear Anal. 58:779-785.
    • (2004) Nonlinear Anal. , vol.58 , pp. 779-785
    • Kalisch, H.1
  • 14
    • 0004288826 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press
    • p Spaces. 2nd ed. Cambridge: Cambridge University Press.
    • (1999) p Spaces. 2nd Ed.
    • Koosis, P.1
  • 15
    • 0040250355 scopus 로고
    • The Stokes and Krasovskii conjectures for the wave of greatest height
    • In preprint form: Univ. of Wisconsin MRC Report no. 2041
    • McLeod, J. B. (1997). The Stokes and Krasovskii conjectures for the wave of greatest height. Studies in Applied Math. 98:311-334 (In preprint form: Univ. of Wisconsin MRC Report no. 2041, 1979).
    • (1979) Studies in Applied Math , vol.98 , pp. 311-334
    • McLeod, J.B.1
  • 18
    • 0013463858 scopus 로고
    • A proof of the Stokes conjecture in the theory of surface waves
    • Plotnikov, P. I. (1982). A proof of the Stokes conjecture in the theory of surface waves (In Russian). Dinamika Splosh. Sredy 57:41-76.
    • (1982) Dinamika Splosh. Sredy , vol.57 , pp. 41-76
    • Plotnikov, P.I.1
  • 19
    • 1642330747 scopus 로고    scopus 로고
    • English translation
    • English translation: Studies in Applied Math. 3:217-244, 2002.
    • (2002) Studies in Applied Math. , vol.3 , pp. 217-244
  • 22
    • 0001358147 scopus 로고
    • A symmetry problem in potential theory
    • Serrin, J. (1976). A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43:304-318.
    • (1976) Arch. Rational Mech. Anal. , vol.43 , pp. 304-318
    • Serrin, J.1
  • 24
    • 0000339396 scopus 로고
    • Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form
    • Cambridge: Cambridge Unviersity Press
    • Stokes, G. G. (1880). Considerations Relative to the Greatest Height of Oscillatory Irrotational Waves Which can be Propagated Without Change of Form. Math. and Phys. Papers, I. Cambridge: Cambridge Unviersity Press, pp. 225-228.
    • (1880) Math. and Phys. Papers, I , pp. 225-228
    • Stokes, G.G.1
  • 25
    • 0018030940 scopus 로고
    • On the existence of a wave of greatest height and Stokes' s conjecture
    • Toland, J. F. (1978). On the existence of a wave of greatest height and Stokes' s conjecture. Proc. Roy. Soc. London A 363:469-485.
    • (1978) Proc. Roy. Soc. London A , vol.363 , pp. 469-485
    • Toland, J.F.1
  • 28
    • 1242319076 scopus 로고    scopus 로고
    • On the symmetry theory for Stokes waves of finite and infinite depth
    • Monographs and Surveys in Applied Mathematics. Chapman & Hall/CRC
    • Toland, J. F. (2000a). On the symmetry theory for Stokes waves of finite and infinite depth. Trends in Applications of Mathematics to Mechanics. Monographs and Surveys in Applied Mathematics. Vol. 106. Chapman & Hall/CRC: pp. 207-217.
    • (2000) Trends in Applications of Mathematics to Mechanics , vol.106 , pp. 207-217
    • Toland, J.F.1
  • 29
    • 0034626637 scopus 로고    scopus 로고
    • Stokes waves in Hardy spaces and as distributions
    • Toland, J. F. (2000b). Stokes waves in Hardy spaces and as distributions. J. Math. Pures Appl. 79:901-917.
    • (2000) J. Math. Pures Appl. , vol.79 , pp. 901-917
    • Toland, J.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.