-
1
-
-
33748808895
-
Optimum Packing of Circles in a Circle
-
I. Hargittai and T. Laurent, eds, London: Portland Press
-
T. Tarnai, "Optimum Packing of Circles in a Circle," in I. Hargittai and T. Laurent, eds., Symmetry 2000 (London: Portland Press, 2002) pp. 121-132
-
(2002)
Symmetry 2000
, pp. 121-132
-
-
Tarnai, T.1
-
2
-
-
85038711982
-
-
lecture note on Mathematics; in Japanese
-
Y. Yamamoto, Sanpojyojyutsu (lecture note on Mathematics; in Japanese) (1841)
-
(1841)
Sanpojyojyutsu
-
-
Yamamoto, Y.1
-
4
-
-
79959039228
-
Packing of Equal Circles in a Circle
-
International Association of Shells and Spatial Structures Nottingham, U.K.: University of Nottingham J.C. Chilton et al, eds
-
T. Tarnai, "Packing of Equal Circles in a Circle," in J.C. Chilton et al., eds., Structural Morphology, Proceedings of the International Colloquium of IASS (International Association of Shells and Spatial Structures) (Nottingham, U.K.: University of Nottingham, 1997) pp. 217-224
-
(1997)
Structural Morphology, Proceedings of the International Colloquium of IASS
, pp. 217-224
-
-
Tarnai, T.1
-
6
-
-
84979328736
-
Der Mindestabstand von n in der Ein-heitskreisscheibe gelegenen Punkten
-
Minimum distance between n points in the unit circle
-
U. Pirl, "Der Mindestabstand von n in der Ein-heitskreisscheibe gelegenen Punkten" (Minimum distance between n points in the unit circle), Math-ematische Nachrichten 40 (1969) pp. 111-124
-
(1969)
Math-ematische Nachrichten
, vol.40
, pp. 111-124
-
-
Pirl, U.1
-
7
-
-
0001937729
-
Densest Packing of Eleven Congruent Circles in a Circle
-
H. Melissen, "Densest Packing of Eleven Congruent Circles in a Circle," Geometriae Dedicata 50 (1994) pp. 15-25
-
(1994)
Geometriae Dedicata
, vol.50
, pp. 15-25
-
-
Melissen, H.1
-
8
-
-
52849115032
-
The Densest Packing of 12 Congruent Circles in a Circle
-
F. Fodor, "The Densest Packing of 12 Congruent Circles in a Circle," Beiträge zur Algebra und Geometrie 41 (2000) pp. 401-409
-
(2000)
Beiträge zur Algebra und Geometrie
, vol.41
, pp. 401-409
-
-
Fodor, F.1
-
9
-
-
85038699127
-
-
Preprint Cookeville, TN: Department of Mathematics, Tennessee Technological University, 8 pp
-
F. Fodor, "The Densest Packing of 13 Congruent Circles in a Circle," Preprint (Cookeville, TN: Department of Mathematics, Tennessee Technological University, 2001) 8 pp
-
(2001)
The Densest Packing of 13 Congruent Circles in a Circle
-
-
Fodor, F.1
-
10
-
-
0041637067
-
The Densest: Packing of 19 Congruent Circles in a Circle
-
F. Fodor, "The Densest: Packing of 19 Congruent Circles in a Circle," Geometriae Dedicata 74 (1999) pp. 139-145
-
(1999)
Geometriae Dedicata
, vol.74
, pp. 139-145
-
-
Fodor, F.1
-
11
-
-
0000096597
-
Dense Packings of Congruent Circles in a Circle
-
R.L. Graham et al., "Dense Packings of Congruent Circles in a Circle," Discrete Mathematics 181 (1998) pp. 139-154
-
(1998)
Discrete Mathematics
, vol.181
, pp. 139-154
-
-
Graham, R.L.1
-
12
-
-
0000071792
-
How to Simulate Billiards and Similar Systems
-
B.D. Lubachevsky, "How to Simulate Billiards and Similar Systems," Journal of Computational Physics 94 (1991) pp. 255-283
-
(1991)
Journal of Computational Physics
, vol.94
, pp. 255-283
-
-
Lubachevsky, B.D.1
-
16
-
-
85038731330
-
Bonsho, Nippon-no-Bijutsu
-
Japanese Tokyo: Sibundo Publishers
-
H. Sugiyama, Bonsho, Nippon-no-Bijutsu 12, No. 355 (Buddhist Big Bells, Art of Japan [Series] 12, No. 355; in Japanese) (Tokyo: Sibundo Publishers, 1995)
-
(1995)
Buddhist Big Bells, Art of Japan [Series]
, vol.12
, Issue.355
-
-
Sugiyama, H.1
-
20
-
-
79959161170
-
-
New Mathematics; in Japanese
-
Chiba, Sanpo-shinsho (New Mathematics; in Japanese) (1830)
-
(1830)
Sanpo-shinsho
-
-
Chiba1
-
21
-
-
33750682125
-
-
Miracle Mathematics, Part II; in Japanese
-
K. Fujita, Zoku-shinpeki-sanpo (Miracle Mathematics, Part II; in Japanese) (1807)
-
(1807)
Zoku-shinpeki-sanpo
-
-
Fujita, K.1
-
22
-
-
0007598290
-
Packing Cylinders into Cylindrical Containers
-
S. Kravitz, "Packing Cylinders into Cylindrical Containers," Mathematics Magazine 40 (1967) pp. 65-71
-
(1967)
Mathematics Magazine
, vol.40
, pp. 65-71
-
-
Kravitz, S.1
-
23
-
-
79959067234
-
-
Mathematical Book on Polyhedra; in Japanese
-
Y Aida, Sanpo kiriko-shu (Mathematical Book on Polyhedra; in Japanese) (1800?)
-
(1800)
Sanpo kiriko-shu
-
-
Y Aida1
-
24
-
-
85038681374
-
Wasan (Old Japanese Mathematics) and Discrete Geometry: From Ethnomathcmatics and Aesthetics to Education and Research
-
Extended Abstracts of International. Tsukuba: University of Tsukuba, Japan
-
D. Nagy, "Wasan (Old Japanese Mathematics) and Discrete Geometry: From Ethnomathcmatics and Aesthetics to Education and Research,".Extended Abstracts of International. Katachi ∪ Symmetry Symposium (Tsukuba: University of Tsukuba, Japan, 1994) pp. 328-332
-
(1994)
Katachi ∪ Symmetry Symposium
, pp. 328-332
-
-
Nagy, D.1
-
25
-
-
79959158482
-
-
A Book on Calculation; in Japanese
-
M. Yamada, Kaizanki (A Book on Calculation; in Japanese) (1659)
-
(1659)
Kaizanki
-
-
Yamada, M.1
-
26
-
-
85038783673
-
-
Textbook on Comprehensive Mathematics; Japanese, author and date unknown
-
Sanpo-taizen-shinansho (Textbook on Comprehensive Mathematics; in Japanese) (author and date unknown)
-
Sanpo-taizen-shinansho
-
-
-
29
-
-
85038665668
-
-
A Beautiful History of Lotus flowers; Japanese Koshigaya: Kadosobo Publishers
-
K. Miura, Hasu-no-Bunkashi (A Beautiful History of Lotus flowers; in Japanese) (Koshigaya: Kadosobo Publishers, 1994)
-
(1994)
Hasu-no-Bunkashi
-
-
Miura, K.1
-
31
-
-
85038659532
-
-
Dower [20] pp. 145-146
-
Dower
, Issue.20
, pp. 145-146
-
-
-
32
-
-
85038768431
-
-
Dower [20] p. 4. Dower refers to the decline of Heian society, after which the warrior class emerged as Japan's real rulers, and the government was moved from Heian to Kamakura
-
Dower
, Issue.20
, pp. 4
-
-
-
33
-
-
0043157258
-
A Mystic History of Fivefold Symmetry in Japan
-
I. Hargittai, ed, Singapore: World Scientific
-
K. Miyazaki, "A Mystic History of Fivefold Symmetry in Japan," in Fivefold Symmetry, I. Hargittai, ed. (Singapore: World Scientific, 1992) pp. 361-393
-
(1992)
Fivefold Symmetry
, pp. 361-393
-
-
Miyazaki, K.1
|