-
2
-
-
0034867881
-
-
and references therein
-
(b) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535-544 and references therein.
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 535-544
-
-
Lu, X.1
Zhang, C.2
Xu, Z.3
-
3
-
-
33751156723
-
-
Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906-2908. To facilitate computation, methyl 2,3-butadienoate and trimethylphosphine were substituted for reagents ethyl 2,3-butadienoate and tributylphosphine used experimentally.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 2906-2908
-
-
Zhang, C.1
Lu, X.2
-
4
-
-
0000182934
-
-
Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041. For reasons of computational efficiency trimethylphosphine was used instead of tributylphosphine for the calculation of imine regioselectivity.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 5031-5041
-
-
Xu, Z.1
Lu, X.2
-
5
-
-
0037462076
-
-
Recently one of our groups has reported a variant of these reactions that affords exclusively six-membered tetrahydropyridines of γ-addition; see: Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716-4717. Expanding upon this earlier work, Wurz and Fu have developed a catalytic enantioselective methodology for the preparation of chiral piperidine derivatives;
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 4716-4717
-
-
Zhu, X.-F.1
Lan, J.2
Kwon, O.3
-
7
-
-
17444432653
-
-
To our knowledge this is the first reported example of a phosphine-catalyzed addition of allenoates to aldehydes; see: Zhu, X.-F. Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387-1390.
-
(2005)
Org. Lett.
, vol.7
, pp. 1387-1390
-
-
Zhu, X.-F.1
Henry, C.E.2
Wang, J.3
Dudding, T.4
Kwon, O.5
-
9
-
-
33751157732
-
-
(b) Stephens, P. J.; Devlin, F. J.; Chabalowski, G. C.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 11623-11627
-
-
Stephens, P.J.1
Devlin, F.J.2
Chabalowski, G.C.3
Frisch, M.J.4
-
10
-
-
0345491105
-
-
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1987, 37, 785-789.
-
(1987)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
11
-
-
84986468715
-
-
(a) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294-301.
-
(1983)
J. Comput. Chem.
, vol.4
, pp. 294-301
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, P.V.R.4
-
12
-
-
36549091139
-
-
(b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265-3269.
-
(1984)
J. Chem. Phys.
, vol.80
, pp. 3265-3269
-
-
Frisch, M.J.1
Pople, J.A.2
Binkley, J.S.3
-
13
-
-
33748614424
-
-
note
-
See Supporting Information for a complete list of authors of these programs.
-
-
-
-
14
-
-
33748586627
-
-
note
-
To further validate experiment, we are currently investigating the regiochemical outcome of these additions when triphenylphosphine is used in place of trimethylphosphine. In addition a full disclosure of the reaction pathways of phosphine-mediated [2 + 2 + 2] aldehyde and [3 + 2] imine/acrylates additions will be reported by our groups shortly.
-
-
-
-
15
-
-
33748613079
-
-
note
-
Low energy transition state structures for acrylate, imine, and aldehyde additions were located through potential energy surface (PES) scans.
-
-
-
-
16
-
-
33748597801
-
-
note
-
For ring closure transition states α-TS4 and γ-TS4, see Supporting Information.
-
-
-
-
17
-
-
22244458282
-
-
Ground-state optimization of the possible enolate geometries revealed that the (Z)-isomeric configuration between the ester and phosphonium groups is energetically preferred; see Supporting Information. For a discussion on the divergent reactivity of the (E)- and (Z)-configurations of zwitterionic intermediate 1↔2, see: Zhu, X.-F.; Schaffner, A.-P.; Li, R. C.; Kwon, O. Org. Lett. 2005, 7, 2977-2980.
-
(2005)
Org. Lett.
, vol.7
, pp. 2977-2980
-
-
Zhu, X.-F.1
Schaffner, A.-P.2
Li, R.C.3
Kwon, O.4
-
19
-
-
84961985847
-
-
Calculated using the CPCM solvation model, (a) Barone, B.; Cossi, M. J. Phys. Chem. 1998, 102, 1995-2001.
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 1995-2001
-
-
Barone, B.1
Cossi, M.2
-
20
-
-
84962428785
-
-
(b) Barone, B.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404-417.
-
(1998)
J. Comput. Chem.
, vol.19
, pp. 404-417
-
-
Barone, B.1
Cossi, M.2
Tomasi, J.3
-
21
-
-
33748611742
-
-
note
-
An extensive conformation search evaluating both re- and si-imine facial selectivity identified α-TS2 and γ-TS2 as the lowest energy transition state structures for α- and γ-addition.
-
-
-
-
22
-
-
33748609796
-
-
note
-
Thermochemical data and coodinates for zwitterionic intermediates 9 and 14 as well as ring closure transition states α-TSS and γ-TS5 can be found in Supporting Information.
-
-
-
-
23
-
-
33748621302
-
-
note
-
Redistribution of charge density from nitrogen (Mulliken charge = -0.55) to the sulfone oxygen closest to phosphorous (Mulliken charge = -0.63) via n →σs-oz.ast; donation has a second-order perturbation energy of mixing 9.37 kcal/mol based on NBO analysis.
-
-
-
-
24
-
-
3542999258
-
-
and references therein
-
For previous theoretical discussions of anomeric sulfonamide nitrogen lone pair donation into the S-O* bond, see: Lee, P. S.; Du, W.; Boger, D. L.; Jorgensen, W. L. J. Org. Chem. 2004, 69, 5448-5453 and references therein.
-
(2004)
J. Org. Chem.
, vol.69
, pp. 5448-5453
-
-
Lee, P.S.1
Du, W.2
Boger, D.L.3
Jorgensen, W.L.4
-
25
-
-
33748615557
-
-
note
-
Experimentally an 83% yield of the α-addition product and 13% yield of a three-component adduct resulting from initial γ-addition is isolated. This product distribution corresponds to a ratio of 84:16.
-
-
-
|