-
2
-
-
0003861434
-
-
Roberts, G., Ed. Plenum Press: New York
-
(b) Roberts, G., Ed. Langmuir-Blodgett Films; Plenum Press: New York, 1990.
-
(1990)
Langmuir-Blodgett Films
-
-
-
3
-
-
0021611070
-
-
(a) Brumbaugh, D. V.; Muenter, A. A.; Knox, W.; Mourou, G.; Wittmerhaus, B. J. Lumin. 1984, 32, 783.
-
(1984)
J. Lumin.
, vol.32
, pp. 783
-
-
Brumbaugh, D.V.1
Muenter, A.A.2
Knox, W.3
Mourou, G.4
Wittmerhaus, B.5
-
4
-
-
33751553558
-
-
(b) Kemnitz, K.; Yoshihara, K.; Tani, T. J. Phys. Chem. 1990, 94, 3099.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 3099
-
-
Kemnitz, K.1
Yoshihara, K.2
Tani, T.3
-
5
-
-
85033038264
-
-
The Physics and Chemistry of Imaging Systems of the Society for Imaging Science and Technology
-
(c) Brumbaugh, D. V.; Muenter, A. A.; Horn, L. A.; Adams, K. A. Excited State Dynamics in a Thiacarbocyanine J-aggregate; The Physics and Chemistry of Imaging Systems of the Society for Imaging Science and Technology: 1994; Vol. 1, pp 274-276.
-
(1994)
Excited State Dynamics in a Thiacarbocyanine J-aggregate
, vol.1
, pp. 274-276
-
-
Brumbaugh, D.V.1
Muenter, A.A.2
Horn, L.A.3
Adams, K.A.4
-
6
-
-
84943903048
-
-
Seefeld, K. P.; Mobius, D.; Kuhn, H. Helv. Chim. Acta 1977, 60, 2608.
-
(1977)
Helv. Chim. Acta
, vol.60
, pp. 2608
-
-
Seefeld, K.P.1
Mobius, D.2
Kuhn, H.3
-
8
-
-
0013130264
-
-
Cox, R., Ed.; Academic Press: New York
-
(a) Large, R. L. In Photographic Sensitivity; Cox, R., Ed.; Academic Press: New York, 1973; pp 241-263.
-
(1973)
Photographic Sensitivity
, pp. 241-263
-
-
Large, R.L.1
-
9
-
-
14544295779
-
-
(b) Tani, T.; Honda, K.; Kikuchi, S. J. Electrochem. Soc. Jpn. 1969, 37, 17.
-
(1969)
J. Electrochem. Soc. Jpn.
, vol.37
, pp. 17
-
-
Tani, T.1
Honda, K.2
Kikuchi, S.3
-
15
-
-
0000740007
-
-
(e) Lenhard, J. R.; Hein, B. R.; Muenter, A. A. J. Phys. Chem. 1993, 97, 8269.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 8269
-
-
Lenhard, J.R.1
Hein, B.R.2
Muenter, A.A.3
-
18
-
-
0000430484
-
-
(a) Makio, S.; Kanamaru, N.; Tanaka, J. Bull. Chem. Soc. Jpn. 1980, 53, 3120.
-
(1980)
Bull. Chem. Soc. Jpn.
, vol.53
, pp. 3120
-
-
Makio, S.1
Kanamaru, N.2
Tanaka, J.3
-
23
-
-
85033068975
-
-
(a) The equilibrium constant for adsorption of TSSA to AgBr is slightly less than that measured for adsorption of a cationic sensitizing dye
-
(a) The equilibrium constant for adsorption of TSSA to AgBr is slightly less than that measured for adsorption of a cationic sensitizing dye.
-
-
-
-
24
-
-
85033052317
-
-
When adsorbed to cubic AgBr at 35°C in the absence of TSSA, mixtures of dye I monomer and J-aggregate can be obtained
-
(b) When adsorbed to cubic AgBr at 35°C in the absence of TSSA, mixtures of dye I monomer and J-aggregate can be obtained.
-
-
-
-
25
-
-
85033071115
-
-
max
-
max.
-
-
-
-
26
-
-
85033058438
-
-
The spectrum of Figure 1B also indicates that, under the conditions for adsorption of dye I as the aggregate, a trace amount of dye is adsorbed in the monomeric state
-
The spectrum of Figure 1B also indicates that, under the conditions for adsorption of dye I as the aggregate, a trace amount of dye is adsorbed in the monomeric state.
-
-
-
-
27
-
-
0000566631
-
-
The spectrum of dye I radical dication is typical of that found for oxidized cyanines as reported in: Lenhard, J. R.; Cameron, A. D. J. Phys. Chem. 1993, 97, 4916.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 4916
-
-
Lenhard, J.R.1
Cameron, A.D.2
-
28
-
-
85033041420
-
-
note
-
For the adsorbed dye I monomer, the relative intensities of the reflectance bands at 722 and 553 nm indicate the adsorbed radical dication to have an apparent extinction coefficient that is 0.67 times that of the dye. In methanol solution the ratio of extinction coefficients is 0.62.
-
-
-
-
32
-
-
0001115895
-
-
(a) Albery, W. J.; Boutelle, M. G.; Colby, P. J.; Hillman, A. R. J. Electroanal. Chem. 1982, 133, 135.
-
(1982)
J. Electroanal. Chem.
, vol.133
, pp. 135
-
-
Albery, W.J.1
Boutelle, M.G.2
Colby, P.J.3
Hillman, A.R.4
-
33
-
-
11944257247
-
-
(b) Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 4301.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 4301
-
-
Chidsey, C.E.D.1
Bertozzi, C.R.2
Putvinski, T.M.3
Mujsce, A.M.4
-
36
-
-
0001555127
-
-
(e) Rowe, G. K.; Carter, M. T.; Richardson, J. N.; Murray, R. W. Langmuir 1995, 11, 1797.
-
(1995)
Langmuir
, vol.11
, pp. 1797
-
-
Rowe, G.K.1
Carter, M.T.2
Richardson, J.N.3
Murray, R.W.4
-
37
-
-
0022738210
-
-
(a) Nechtschein, M.; Devreux, F.; Genoud, F.; Vieil, E.; Pernaut, J. M.; Genies, E. Synth. Met. 1986, 15, 59.
-
(1986)
Synth. Met.
, vol.15
, pp. 59
-
-
Nechtschein, M.1
Devreux, F.2
Genoud, F.3
Vieil, E.4
Pernaut, J.M.5
Genies, E.6
-
38
-
-
0026239483
-
-
(b) Ameniya, T.; Hashimoto, K.; Fujishima, A. J. Electrochem. Soc. 1991, 138, 2845.
-
(1991)
J. Electrochem. Soc.
, vol.138
, pp. 2845
-
-
Ameniya, T.1
Hashimoto, K.2
Fujishima, A.3
-
40
-
-
0023314512
-
-
(a) Bowden, E. F.; Duatartas, M. F.; Evans, J. F. J. Electroanal. Chem. 1987, 219, 91.
-
(1987)
J. Electroanal. Chem.
, vol.219
, pp. 91
-
-
Bowden, E.F.1
Duatartas, M.F.2
Evans, J.F.3
-
41
-
-
33748620824
-
-
(b) Braun, H.; Storck, W.; Doblhofer, K. J. Electroanal. Chem. 1980, 115, 143.
-
(1980)
J. Electroanal. Chem.
, vol.115
, pp. 143
-
-
Braun, H.1
Storck, W.2
Doblhofer, K.3
-
42
-
-
0023311140
-
-
(a) Bowden, E. F.; Daurtartas, M. F.; Evans, J. F. J. Electroanal. Chem. 1987, 219, 49.
-
(1987)
J. Electroanal. Chem.
, vol.219
, pp. 49
-
-
Bowden, E.F.1
Daurtartas, M.F.2
Evans, J.F.3
-
43
-
-
0023311139
-
-
(b) Daurtartas, M. F.; Bowden, E. F.; Evans, J. F. J. Electroanal. Chem. 1987, 219, 71.
-
(1987)
J. Electroanal. Chem.
, vol.219
, pp. 71
-
-
Daurtartas, M.F.1
Bowden, E.F.2
Evans, J.F.3
-
46
-
-
85033058706
-
-
At pH 2.1, the gelatin glycine sites are partially protonated, and the gelatin acquires polyelectrolyte properties
-
At pH 2.1, the gelatin glycine sites are partially protonated, and the gelatin acquires polyelectrolyte properties.
-
-
-
-
47
-
-
0025956644
-
-
Steiger, R.; Aebischer, J.-N.; Haselbach, E. J. Imaging Sci. 1991, 35, 1.
-
(1991)
J. Imaging Sci.
, vol.35
, pp. 1
-
-
Steiger, R.1
Aebischer, J.-N.2
Haselbach, E.3
-
48
-
-
28244451267
-
-
(a) Chen, S. Y.; Horng, M. L.; Quitevis, E. L. J. Phys. Chem. 1989, 93, 3683.
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 3683
-
-
Chen, S.Y.1
Horng, M.L.2
Quitevis, E.L.3
-
49
-
-
0023849064
-
-
(b) Quitevis, E. L.; Horng, M. L.; Chen, S. Y. J. Phys. Chem. 1988, 92, 256.
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 256
-
-
Quitevis, E.L.1
Horng, M.L.2
Chen, S.Y.3
-
50
-
-
33751553558
-
-
(c) Kemnitz, K.; Yoshihara, K.; Tani, T. J. Phys. Chem. 1990, 94, 3099.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 3099
-
-
Kemnitz, K.1
Yoshihara, K.2
Tani, T.3
-
51
-
-
33748623269
-
-
(a) West, W. Nature 1961, 191, 902.
-
(1961)
Nature
, vol.191
, pp. 902
-
-
West, W.1
-
52
-
-
0015961354
-
-
(b) Sturmer, D. M.; Gaugh, W. S.; Bruschi, B. J. Photogr. Sci. Eng. 1974, 18, 49.
-
(1974)
Photogr. Sci. Eng.
, vol.18
, pp. 49
-
-
Sturmer, D.M.1
Gaugh, W.S.2
Bruschi, B.J.3
-
56
-
-
85033037517
-
-
The dye concentration range examined was limited at low coverage by instrument sensitivity and at high coverage by the onset of J-aggregation
-
The dye concentration range examined was limited at low coverage by instrument sensitivity and at high coverage by the onset of J-aggregation.
-
-
-
-
57
-
-
85033060245
-
-
note
-
In acetonitrile, the removal of a second electron from monomeric dye I can be accomplished electrochemically at a potential of ca. 1.2 V. This second oxidation is irreversible, and the trication formed is very unstable. This higher oxidation state for dye I is not achievable with the ferricyanide or molybdicyanide redox buffers.
-
-
-
-
58
-
-
85033046620
-
-
An unambiguous determination of the effect of adsorption on dye potential requires knowledge of the oxidation potential for dye I dissolved in the aqueous phosphate buffer. Dye I is not soluble in this buffer solution
-
An unambiguous determination of the effect of adsorption on dye potential requires knowledge of the oxidation potential for dye I dissolved in the aqueous phosphate buffer. Dye I is not soluble in this buffer solution.
-
-
-
-
59
-
-
85033068481
-
-
Chemical oxidation of methanol/water solutions of cyanine H- or J-aggregates yields oxidized cyanine molecules in the unassociated state
-
Chemical oxidation of methanol/water solutions of cyanine H- or J-aggregates yields oxidized cyanine molecules in the unassociated state.
-
-
-
-
60
-
-
85033047686
-
-
The formal oxidation potentials, determined at a glassy carbon electrode, for the hexacyanoferrate and octacyanomolybdate redox couples in this buffer system are 0.28 and 0.57 V vs Ag/AgCl, respectively
-
The formal oxidation potentials, determined at a glassy carbon electrode, for the hexacyanoferrate and octacyanomolybdate redox couples in this buffer system are 0.28 and 0.57 V vs Ag/AgCl, respectively.
-
-
-
-
61
-
-
0001272468
-
-
(a) Muenter, A. A.; Brumbaugh, D. V.; Apolito, J.; Horn, L. A.; Spano, F. C.; Mukamel, S. J. Phys. Chem. 1992, 96, 2783.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 2783
-
-
Muenter, A.A.1
Brumbaugh, D.V.2
Apolito, J.3
Horn, L.A.4
Spano, F.C.5
Mukamel, S.6
-
62
-
-
0010545675
-
-
(c) Spano, F. C.; Mukamel, S.; Kuklinski, J. R.; Brumbaugh, D. V.; Burberry, M. S.; Muenter, A. A. Mol. Cryst. Liq. Cryst. 1991, 194, 331.
-
(1991)
Mol. Cryst. Liq. Cryst.
, vol.194
, pp. 331
-
-
Spano, F.C.1
Mukamel, S.2
Kuklinski, J.R.3
Brumbaugh, D.V.4
Burberry, M.S.5
Muenter, A.A.6
-
63
-
-
0000065351
-
-
∞ are the transition energies for the monomer and infinite aggregate, respectively. See: McRae, E. G.; Kasha, M. J. Chem. Phys. 1958, 28, 721.
-
(1958)
J. Chem. Phys.
, vol.28
, pp. 721
-
-
McRae, E.G.1
Kasha, M.2
-
64
-
-
85033037901
-
-
note
-
The similarity in the spectral bandwidth changes for the aggregate dilution and aggregate oxidation also supports a model wherein the oxidized molecules are distributed as shown in Figure 8. An alternate model where the oxidized sites are located at the edges of the aggregate would give a different distribution of aggregate sizes and different spectral bandwidth changes.
-
-
-
-
65
-
-
85033056249
-
-
note
-
Knowing the total number of dye molecules per AgBr grain, the oxidized dye/unoxidized dye ratio for the aggregate was calculated from the magnitude of the 842 nm band. However, the J-aggregate dilution data of Figure 7 indicate that when the fractional degree of oxidation exceeds 60%, the proportionality between concentration and [1/R] is compromised because of broadening of the aggregate band. The Nernst plot for the aggregate included only those points derived within the linear region.
-
-
-
-
68
-
-
4944264358
-
-
Ginley, D. S., Ed.; The Electrochemical Society: Pennington, NJ, Proc.
-
Lenhard, J. R.; Muenter, A. A. In Photoelectrochemistry and Electrosynthesis on Semiconducting Materials; Ginley, D. S., Ed.; The Electrochemical Society: Pennington, NJ, 1988; Proc. Vol. 88-14, pp 97-104.
-
(1988)
Photoelectrochemistry and Electrosynthesis on Semiconducting Materials
, vol.88
, Issue.14
, pp. 97-104
-
-
Lenhard, J.R.1
Muenter, A.A.2
-
71
-
-
85033051939
-
-
c is equivalent to a monomeric dye having a reduction potential in acetonitrile of -0.92 V vs Ag/AgCl
-
c is equivalent to a monomeric dye having a reduction potential in acetonitrile of -0.92 V vs Ag/AgCl.
-
-
-
-
77
-
-
0029637643
-
-
(a) Trosken, B.; Willig, F.; Schwarzburg, K.; Ehret, A.; Spitler, M. J. Phys. Chem. 1995, 99, 5152.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 5152
-
-
Trosken, B.1
Willig, F.2
Schwarzburg, K.3
Ehret, A.4
Spitler, M.5
-
78
-
-
0011365020
-
-
(b) Kietzmann, R.; Ehret, A.; Spitler, M.; Willig, F. J. Am. Chem. Soc. 1993, 115, 1930.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 1930
-
-
Kietzmann, R.1
Ehret, A.2
Spitler, M.3
Willig, F.4
-
79
-
-
0001382808
-
-
(c) Tani, T.; Suzumoto, T.; Ohzeki, K. J. Phys. Chem. 1990, 94, 1298.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 1298
-
-
Tani, T.1
Suzumoto, T.2
Ohzeki, K.3
-
80
-
-
85033051940
-
-
note
-
As reported in ref 45a, λ for a J-aggregated anionic dye was found to differ from that of a cationic monomeric dye by a factor of 10. We expect a much smaller difference in λ for a monomer/aggregate pair derived from the same chromophore with the same net charge.
-
-
-
-
81
-
-
85033054332
-
-
note
-
q results in only a 40% difference in spectral sensitization efficiency.
-
-
-
-
83
-
-
85033046370
-
-
note
-
Relative quantum efficiencies of spectral sensitization were also measured using standard photographic techniques on coatings prepared using a companion AgBr dispersion containing no iridium dopant. These measurements indicate a quantum efficiency >0.9 for the monomer, whereas the J-aggregate afforded no spectral sensitivity to the silver halide.
-
-
-
-
84
-
-
85033056167
-
-
note
-
r of 0.8 was obtained, showing that spectral sensitization of AgBr at this wavelength is feasible for a dye with the appropriate redox levels.
-
-
-
|