메뉴 건너뛰기




Volumn 69, Issue 16-18, 2006, Pages 2078-2089

A novel genetic reinforcement learning for nonlinear fuzzy control problems

Author keywords

Efficient mutation; Fuzzy system; Genetic algorithm; Nonlinear control; Reinforcement learning; Sequential search

Indexed keywords

COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; FUZZY CONTROL; GENETIC ALGORITHMS; NONLINEAR CONTROL SYSTEMS; PROBLEM SOLVING;

EID: 33748600965     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2005.09.015     Document Type: Article
Times cited : (15)

References (30)
  • 1
    • 33748614288 scopus 로고    scopus 로고
    • C.W. Anderson, Learning and problem solving with multilayer connectionist systems, Ph.D. dissertation, University of Massachusetts, Amherst, 1986.
  • 3
    • 33748612934 scopus 로고    scopus 로고
    • A.G. Barto, M.I. Jordan, Gradient following without backpropagation in layered networks, in: Proceedings of IEEE First Annual Conference on Neural Networks, vol. 2, San Diego, CA, 1987, pp. 629-636.
  • 4
    • 0019809652 scopus 로고
    • Landmark learning: an illustration of associative search
    • Barto A.G., and Sutton R.S. Landmark learning: an illustration of associative search. Biol. Cybern. 42 (1981) 1-8
    • (1981) Biol. Cybern. , vol.42 , pp. 1-8
    • Barto, A.G.1    Sutton, R.S.2
  • 5
    • 0020970738 scopus 로고
    • Neuron like adaptive elements that can solve difficult learning control problem
    • Barto A.G., Sutton R.S., and Anderson C.W. Neuron like adaptive elements that can solve difficult learning control problem. IEEE Trans. Syst. Man Cybern. SMC-13 5 (1983) 834-847
    • (1983) IEEE Trans. Syst. Man Cybern. , vol.SMC-13 , Issue.5 , pp. 834-847
    • Barto, A.G.1    Sutton, R.S.2    Anderson, C.W.3
  • 7
    • 0023295116 scopus 로고    scopus 로고
    • K.C. Cheok, N.K. Loh, A ball-balancing demonstration of optimal and disturbance-accommodating control, IEEE Control Syst. Mag. (1987) 54-57.
  • 8
    • 33748604725 scopus 로고    scopus 로고
    • O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases, Advances in Fuzzy Systems-Applications and Theory, vol. 19, World Scientific Publishing, NJ, 2001.
  • 9
    • 2942574444 scopus 로고    scopus 로고
    • Online tuning of fuzzy inference systems using dynamic Q-Learning
    • Er M.J., and Deng C. Online tuning of fuzzy inference systems using dynamic Q-Learning. IEEE Trans. Syst. Man Cybern. B 34 3 (2004) 1478-1489
    • (2004) IEEE Trans. Syst. Man Cybern. B , vol.34 , Issue.3 , pp. 1478-1489
    • Er, M.J.1    Deng, C.2
  • 10
    • 0033726212 scopus 로고    scopus 로고
    • O. Grigore, Reinforcement learning neural network used in control of nonlinear systems, in: Proceedings of the IEEE International Conference on Industrial Technology, vol 1, January 2000, pp. 19-22.
  • 11
    • 0026839028 scopus 로고
    • Nonolinear control via approximate input-output linearization: the ball and beam example
    • Hauser J., Sastry S., and Kokotovic P. Nonolinear control via approximate input-output linearization: the ball and beam example. IEEE Trans. Autom. Control 37 (1992) 392-398
    • (1992) IEEE Trans. Autom. Control , vol.37 , pp. 392-398
    • Hauser, J.1    Sastry, S.2    Kokotovic, P.3
  • 12
    • 0007911636 scopus 로고
    • Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms
    • Homaifar A., and McCormick E. Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3 9 (1995) 129-139
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.9 , pp. 129-139
    • Homaifar, A.1    McCormick, E.2
  • 14
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • Juang C.F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans. Fuzzy Syst. 10 2 (2002) 155-170
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 155-170
    • Juang, C.F.1
  • 15
    • 0031999146 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • Juang C.F., and Lin C.T. An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6 1 (1998) 12-32
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 16
    • 0033705962 scopus 로고    scopus 로고
    • Genetic reinforcement learning through symbiotic evolution for fuzzy controller design
    • Juang C.F., Lin J.Y., and Lin C.T. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Trans. Syst. Man Cybern. B 30 2 (2000) 290-302
    • (2000) IEEE Trans. Syst. Man Cybern. B , vol.30 , Issue.2 , pp. 290-302
    • Juang, C.F.1    Lin, J.Y.2    Lin, C.T.3
  • 17
    • 0027539712 scopus 로고
    • Fuzzy control of ph using genetic algorithms
    • Karr C.L., and Gentry E.J. Fuzzy control of ph using genetic algorithms. IEEE Trans. Fuzzy Syst. 1 (1993) 46-53
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 46-53
    • Karr, C.L.1    Gentry, E.J.2
  • 18
    • 17444385973 scopus 로고    scopus 로고
    • Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems
    • Kaya M., and Alhajj R. Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems. IEEE Trans. Syst. Man Cybern. B 35 2 (2005) 326-338
    • (2005) IEEE Trans. Syst. Man Cybern. B , vol.35 , Issue.2 , pp. 326-338
    • Kaya, M.1    Alhajj, R.2
  • 19
    • 1642311384 scopus 로고    scopus 로고
    • A GA-based neural fuzzy system for temperature control
    • Lin C.J. A GA-based neural fuzzy system for temperature control. Fuzzy Sets and Systems 143 (2004) 311-333
    • (2004) Fuzzy Sets and Systems , vol.143 , pp. 311-333
    • Lin, C.J.1
  • 20
    • 0036472288 scopus 로고    scopus 로고
    • C.J. Lin, A GA-based neural network with supervised and reinforcement learning, J. Chin. Inst. Electr. Eng. 9(1) (2002) 11-24.
  • 21
    • 1642351027 scopus 로고    scopus 로고
    • Nonlinear system control using compensatory neuro-fuzzy networks
    • Lin C.J., and Chen C.H. Nonlinear system control using compensatory neuro-fuzzy networks. IEICE Trans. Fund. E86-A 9 (2003) 2309-2316
    • (2003) IEICE Trans. Fund. , vol.E86-A , Issue.9 , pp. 2309-2316
    • Lin, C.J.1    Chen, C.H.2
  • 22
    • 0033692593 scopus 로고    scopus 로고
    • GA-based fuzzy reinforcement learning for control of a magnetic bearing system
    • Lin C.T., and Jo C.P. GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans. Syst. Man Cybern. B 30 2 (2000) 276-289
    • (2000) IEEE Trans. Syst. Man Cybern. B , vol.30 , Issue.2 , pp. 276-289
    • Lin, C.T.1    Jo, C.P.2
  • 23
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Lin C.T., and Lee C.S.G. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans. Fuzzy Syst. 2 (1994) 46-63
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , pp. 46-63
    • Lin, C.T.1    Lee, C.S.G.2
  • 25
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • Moriarty D.E., and Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Mach. Learn. 22 (1996) 11-32
    • (1996) Mach. Learn. , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 26
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1 1 (1985) 116-132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.1 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 27
    • 0026956790 scopus 로고
    • Process control by on-line trained neural controllers
    • Tanomaru J., and Omatu S. Process control by on-line trained neural controllers. IEEE Trans. Ind. Electron. 39 (1992) 511-521
    • (1992) IEEE Trans. Ind. Electron. , vol.39 , pp. 511-521
    • Tanomaru, J.1    Omatu, S.2
  • 28
    • 0027701513 scopus 로고
    • Genetic reinforcement learning for neuro control problems
    • Whitley D., Dominic S., Das R., and Anderson C.W. Genetic reinforcement learning for neuro control problems. Mach. Learn. 13 (1993) 259-284
    • (1993) Mach. Learn. , vol.13 , pp. 259-284
    • Whitley, D.1    Dominic, S.2    Das, R.3    Anderson, C.W.4
  • 29
    • 0036911781 scopus 로고    scopus 로고
    • X. Xu, H.G. He, Residual-gradient-based neural reinforcement learning for the optimal control of an acrobat, in: Proceedings of the IEEE International Conference on Intelligent Control, October 2002, pp. 27-30.
  • 30
    • 0035692510 scopus 로고    scopus 로고
    • X.W. Yan, Z.D. Deng, Z.Q. Sun, Competitive Takagi-Sugeno fuzzy reinforcement learning, in: Proceedings of the IEEE International Conference on Control Applications, September 2001, pp. 878-883.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.