메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages 456-461

Time series forecasting methodology for multiple-step-ahead prediction

Author keywords

Clustering; Computational intelligence; Forecasting; Neu ral networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATION THEORY; NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 33748563066     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (20)
  • 2
    • 0001541230 scopus 로고    scopus 로고
    • Detecting differences between delay vector distributions
    • C. Diks, W. R. van Zwet, F. Hakens, and J. DeGoede, Detecting differences between delay vector distributions, Physical Review E 53 (1996), no. 3, 2169-2176.
    • (1996) Physical Review E , vol.53 , Issue.3 , pp. 2169-2176
    • Diks, C.1    Van Zwet, W.R.2    Hakens, F.3    Degoede, J.4
  • 4
    • 0035399722 scopus 로고    scopus 로고
    • Noisy time series prediction using a recurrent neural net-work and grammatical inference
    • L. C. Giles, S. Lawrence, and A. H. Tsoi, Noisy time series prediction using a recurrent neural net-work and grammatical inference, Machine Learning 44 (2001), no. 1/2, 161-183.
    • (2001) Machine Learning , vol.44 , Issue.1-2 , pp. 161-183
    • Giles, L.C.1    Lawrence, S.2    Tsoi, A.H.3
  • 5
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989), 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 7
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • M. B. Kennel, R. Brown, and H. D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A 45 (1992), no. 6, 3403-3411.
    • (1992) Physical Review A , vol.45 , Issue.6 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 8
    • 0035419653 scopus 로고    scopus 로고
    • Adaptive stepsize algorithms for on-line training of neural networks
    • G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis, Adaptive stepsize algorithms for on-line training of neural networks, Nonlinear Analysis, T.M.A. 47 (2001), no. 5, 3425-3430.
    • (2001) Nonlinear Analysis, T.M.A. , vol.47 , Issue.5 , pp. 3425-3430
    • Magoulas, G.D.1    Plagianakos, V.P.2    Vrahatis, M.N.3
  • 9
    • 0031028741 scopus 로고    scopus 로고
    • Effective backpropagation training with variable stepsize
    • G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis, Effective backpropagation training with variable stepsize, Neural Networks 10 (1997), no. 1, 69-82.
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 69-82
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 10
    • 0011837881 scopus 로고
    • Local forecasting of high dimensional chaotic dynamics
    • (M. Casdagli and S. Eubank, eds.), Addison-Wesley
    • T. P. Meyer and N. H. Packard, Local forecasting of high dimensional chaotic dynamics, Nonlinear Modelling and Forecasting (M. Casdagli and S. Eubank, eds.), Addison-Wesley, 1992, pp. 249-264.
    • (1992) Nonlinear Modelling and Forecasting , pp. 249-264
    • Meyer, P.1    Packard, N.H.2
  • 11
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6 (1993), 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.1
  • 13
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica (1999), 143-195.
    • (1999) Acta Numerica , pp. 143-195
    • Pinkus, A.1
  • 14
    • 0001053173 scopus 로고
    • Prediction of chaotic time series with neural networks and the issue of dynamic modeling
    • J. C. Principe, A. Rathie, and J. M. Kuo, Prediction of chaotic time series with neural networks and the issue of dynamic modeling, International Journal of Bifurcation and Chaos 2 (1992), no. 4, 989-996.
    • (1992) International Journal of Bifurcation and Chaos , vol.2 , Issue.4 , pp. 989-996
    • Principe, J.C.1    Rathie, A.2    Kuo, J.M.3
  • 15
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
    • J. C. Principe, L. Wang, and M. A. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proceedings of the IEEE, no. 6, 1998, pp. 2240-2257.
    • (1998) Proceedings of the IEEE , Issue.6 , pp. 2240-2257
    • Principe, J.C.1    Wang, L.2    Motter, M.A.3
  • 17
    • 0036230457 scopus 로고    scopus 로고
    • The new k-windows algorithm for improving the k-means clustering algorithm
    • M.N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides, The new k-windows algorithm for improving the k-means clustering algorithm, Journal of Complexity 18 (2002), 375-391.
    • (2002) Journal of Complexity , vol.18 , pp. 375-391
    • Vrahatis, M.N.1    Boutsinas, B.2    Alevizos, P.3    Pavlides, G.4
  • 18
    • 0034894378 scopus 로고    scopus 로고
    • An empirical analysis of data requirements for financial forecasting with neural networks
    • S. Walczak, An empirical analysis of data requirements for financial forecasting with neural networks, Journal of Management Information Systems 17 (2001), no. 4, 203-222.
    • (2001) Journal of Management Information Systems , vol.17 , Issue.4 , pp. 203-222
    • Walczak, S.1
  • 19
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting
    • A. S. Weigend, M. Mangeas, and A. N. Srivastava, Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting, International Journal of Neural Systems 6 (1995), 373-399.
    • (1995) International Journal of Neural Systems , vol.6 , pp. 373-399
    • Weigend, A.S.1    Mangeas, M.2    Srivastava, A.N.3
  • 20
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • H. White, Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings, Neural Networks 3 (1990), 535-549.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.