메뉴 건너뛰기




Volumn 4, Issue 2, 2006, Pages 275-290

A LOGARITHMIC FOURTH-ORDER PARABOLIC EQUATION AND RELATED LOGARITHMIC SOBOLEV INEQUALITIES

Author keywords

Cauchy problem; Entropy entropy production method; Existence of global in time solutions; Fisher information; Higher order parabolic equations; Logarithmic sobolev inequality; Long time behavior; Poincar inequality

Indexed keywords


EID: 33748533414     PISSN: 15396746     EISSN: 19450796     Source Type: Journal    
DOI: 10.4310/CMS.2006.v4.n2.a1     Document Type: Article
Times cited : (24)

References (18)
  • 1
    • 0023308798 scopus 로고
    • Diffusion-drift modeling of strong inversion layers
    • [1]
    • [1] M. Ancona, Diffusion-drift modeling of strong inversion layers, COMPEL, 6, 11-18, 1987.
    • (1987) COMPEL , vol.6 , pp. 11-18
    • Ancona, M.1
  • 2
    • 45149137344 scopus 로고
    • Higher order nonlinear degenerate parabolic equations
    • [2]
    • [2] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Di®.Eqs., 83, 179-206, 1990.
    • (1990) J. Di®.Eqs , vol.83 , pp. 179-206
    • Bernis, F.1    Friedman, A.2
  • 3
    • 0000019424 scopus 로고    scopus 로고
    • The mathematics of moving contact lines in thin liquid films
    • [3]
    • [3] A. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math.Soc., 45, 689-697, 1998.
    • (1998) Notices Amer. Math.Soc , vol.45 , pp. 689-697
    • Bertozzi, A.1
  • 4
    • 84990696155 scopus 로고
    • Existence and positivity of solutions of a fourth-ordernonlinear PDE describing interface fluctuations
    • [4]
    • [4] P. Bleher, J. Lebowitz and E. Speer, Existence and positivity of solutions of a fourth-ordernonlinear PDE describing interface fluctuations, Comm. Pure Appl. Math., 47, 923-942, 1994.
    • (1994) Comm. Pure Appl. Math , vol.47 , pp. 923-942
    • Bleher, P.1    Lebowitz, J.2    Speer, E.3
  • 5
    • 14844333851 scopus 로고    scopus 로고
    • Long-time behavior for a nonlinear fourth orderparabolic equation
    • [5]
    • [5] M. Caceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth orderparabolic equation, Trans. Amer. Math. Soc., 357, 1161-1175, 2004.
    • (2004) Trans. Amer. Math. Soc , vol.357 , pp. 1161-1175
    • Caceres, M.1    Carrillo, J.2    Toscani, G.3
  • 6
    • 0041760868 scopus 로고    scopus 로고
    • Positive entropic schemes for a nonlinear fourth-order equation
    • [6]
    • [6] J. A. Carrillo, A. JUngel and S. Tang, Positive entropic schemes for a nonlinear fourth-order equation, Discrete Contin. Dynam. Sys. B, 3, 1-20, 2003.
    • (2003) Discrete Contin. Dynam. Sys. B , vol.3 , pp. 1-20
    • Carrillo, J. A.1    JUngel, A.2    Tang, S.3
  • 7
    • 27744435255 scopus 로고    scopus 로고
    • Quantum hydrodynamic models derived from the entropy principle
    • [7]
    • [7] P. Degond, F. Méhats and C. Ringhofer, Quantum hydrodynamic models derived from the entropy principle, Contemp. Math., 371, 107-131, 2005.
    • (2005) Contemp. Math , vol.371 , pp. 107-131
    • Degond, P.1    Méhats, F.2    Ringhofer, C.3
  • 8
    • 0001068645 scopus 로고
    • Fluctuations of a stationary nonequilibrium interface
    • [8]
    • [8] B. Derrida, J. Lebowitz, E. Speer and H. Spohn, Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett., 67, 165-168, 1991.
    • (1991) Phys. Rev. Lett , vol.67 , pp. 165-168
    • Derrida, B.1    Lebowitz, J.2    Speer, E.3    Spohn, H.4
  • 9
    • 84901619562 scopus 로고
    • A simple proof of the logarithmic Sobolev inequality on the circle,Séminaire de Probabilités, XXI
    • [9]
    • [9] M. Emery and J. E. Yukich, A simple proof of the logarithmic Sobolev inequality on the circle,Séminaire de Probabilités, XXI, Lecture Notes in Math., 1247, 173-175, 1987.
    • (1987) Lecture Notes in Math , vol.1247 , pp. 173-175
    • Emery, M.1    Yukich, J. E.2
  • 11
    • 32544458267 scopus 로고    scopus 로고
    • A nonlinear fourth-order parabolic equation with non-homogeneous boundary conditions
    • [11]
    • [11] M. P. Gualdani, A. JUngel and G. Toscani, A nonlinear fourth-order parabolic equation with non-homogeneous boundary conditions, SIAM J. Math. Anal., 37(6), 1761-1779, 2006.
    • (2006) SIAM J. Math. Anal , vol.37 , Issue.6 , pp. 1761-1779
    • Gualdani, M. P.1    JUngel, A.2    Toscani, G.3
  • 12
    • 32544439082 scopus 로고    scopus 로고
    • An algorithmic construction of entropies in higher-order nonlinear pdes
    • [12]
    • [12] A. JUngel and D. Matthes, An algorithmic construction of entropies in higher-order nonlinear pdes, Nonlinearity, 19, 633-659, 2006.
    • (2006) Nonlinearity , vol.19 , pp. 633-659
    • JUngel, A.1    Matthes, D.2
  • 13
    • 0034353705 scopus 로고    scopus 로고
    • Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems
    • [13]
    • [13] A. JUngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems, SIAM J. Math. Anal., 32, 760-777, 2000.
    • (2000) SIAM J. Math. Anal , vol.32 , pp. 760-777
    • JUngel, A.1    Pinnau, R.2
  • 14
    • 0035322533 scopus 로고    scopus 로고
    • A positivity-preserving numerical scheme for a nonlinearfourth-order parabolic equation
    • [14]
    • [14] A. Jungel and R. Pinnau, A positivity-preserving numerical scheme for a nonlinearfourth-order parabolic equation, SIAM J. Num. Anal., 39, 385-406, 2001.
    • (2001) SIAM J. Num. Anal , vol.39 , pp. 385-406
    • Jungel, A.1    Pinnau, R.2
  • 15
    • 0038407258 scopus 로고    scopus 로고
    • Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation
    • [15]
    • [15] A. Jungel and G. Toscani, Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation, Z. Angew. Math. Phys., 54, 377-386, 2003.
    • (2003) Z. Angew. Math. Phys , vol.54 , pp. 377-386
    • Jungel, A.1    Toscani, G.2
  • 16
    • 84968517521 scopus 로고
    • Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators
    • [16]
    • [16] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal., 39, 42-56, 1980.
    • (1980) J. Funct. Anal , vol.39 , pp. 42-56
    • Rothaus, O. S.1
  • 17
    • 34250112428 scopus 로고
    • Compact sets in the space Lp(0,T;B)
    • [17]
    • [17] J. Simon, Compact sets in the space Lp(0,T;B), Ann. Math. Pura Appl., 146, 65-96, 1987.
    • (1987) Ann. Math. Pura Appl , vol.146 , pp. 65-96
    • Simon, J.1
  • 18
    • 0000618729 scopus 로고
    • Logarithmic Sobolev inequalities and hypercontractive estimates on the circle
    • [18]
    • [18] F. B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle,J. Funct. Anal., 37, 218-234, 1980.
    • (1980) J. Funct. Anal , vol.37 , pp. 218-234
    • Weissler, F. B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.