-
1
-
-
0023308798
-
Diffusion-drift modeling of strong inversion layers
-
[1]
-
[1] M. Ancona, Diffusion-drift modeling of strong inversion layers, COMPEL, 6, 11-18, 1987.
-
(1987)
COMPEL
, vol.6
, pp. 11-18
-
-
Ancona, M.1
-
2
-
-
45149137344
-
Higher order nonlinear degenerate parabolic equations
-
[2]
-
[2] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Di®.Eqs., 83, 179-206, 1990.
-
(1990)
J. Di®.Eqs
, vol.83
, pp. 179-206
-
-
Bernis, F.1
Friedman, A.2
-
3
-
-
0000019424
-
The mathematics of moving contact lines in thin liquid films
-
[3]
-
[3] A. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math.Soc., 45, 689-697, 1998.
-
(1998)
Notices Amer. Math.Soc
, vol.45
, pp. 689-697
-
-
Bertozzi, A.1
-
4
-
-
84990696155
-
Existence and positivity of solutions of a fourth-ordernonlinear PDE describing interface fluctuations
-
[4]
-
[4] P. Bleher, J. Lebowitz and E. Speer, Existence and positivity of solutions of a fourth-ordernonlinear PDE describing interface fluctuations, Comm. Pure Appl. Math., 47, 923-942, 1994.
-
(1994)
Comm. Pure Appl. Math
, vol.47
, pp. 923-942
-
-
Bleher, P.1
Lebowitz, J.2
Speer, E.3
-
5
-
-
14844333851
-
Long-time behavior for a nonlinear fourth orderparabolic equation
-
[5]
-
[5] M. Caceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth orderparabolic equation, Trans. Amer. Math. Soc., 357, 1161-1175, 2004.
-
(2004)
Trans. Amer. Math. Soc
, vol.357
, pp. 1161-1175
-
-
Caceres, M.1
Carrillo, J.2
Toscani, G.3
-
6
-
-
0041760868
-
Positive entropic schemes for a nonlinear fourth-order equation
-
[6]
-
[6] J. A. Carrillo, A. JUngel and S. Tang, Positive entropic schemes for a nonlinear fourth-order equation, Discrete Contin. Dynam. Sys. B, 3, 1-20, 2003.
-
(2003)
Discrete Contin. Dynam. Sys. B
, vol.3
, pp. 1-20
-
-
Carrillo, J. A.1
JUngel, A.2
Tang, S.3
-
7
-
-
27744435255
-
Quantum hydrodynamic models derived from the entropy principle
-
[7]
-
[7] P. Degond, F. Méhats and C. Ringhofer, Quantum hydrodynamic models derived from the entropy principle, Contemp. Math., 371, 107-131, 2005.
-
(2005)
Contemp. Math
, vol.371
, pp. 107-131
-
-
Degond, P.1
Méhats, F.2
Ringhofer, C.3
-
8
-
-
0001068645
-
Fluctuations of a stationary nonequilibrium interface
-
[8]
-
[8] B. Derrida, J. Lebowitz, E. Speer and H. Spohn, Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett., 67, 165-168, 1991.
-
(1991)
Phys. Rev. Lett
, vol.67
, pp. 165-168
-
-
Derrida, B.1
Lebowitz, J.2
Speer, E.3
Spohn, H.4
-
9
-
-
84901619562
-
A simple proof of the logarithmic Sobolev inequality on the circle,Séminaire de Probabilités, XXI
-
[9]
-
[9] M. Emery and J. E. Yukich, A simple proof of the logarithmic Sobolev inequality on the circle,Séminaire de Probabilités, XXI, Lecture Notes in Math., 1247, 173-175, 1987.
-
(1987)
Lecture Notes in Math
, vol.1247
, pp. 173-175
-
-
Emery, M.1
Yukich, J. E.2
-
10
-
-
33751020998
-
-
[10] Universita di Pavia, Italy, in preparation
-
[10] U. Gianazza, G. Savaré and G. Toscani, A fourth-order nonlinear PDE as gradient flow of the Fisher information in Wasserstein spaces, Universita di Pavia, Italy, in preparation, 2005.
-
(2005)
A fourth-order nonlinear PDE as gradient flow of the Fisher information in Wasserstein spaces
-
-
Gianazza, U.1
Savaré, G.2
Toscani, G.3
-
11
-
-
32544458267
-
A nonlinear fourth-order parabolic equation with non-homogeneous boundary conditions
-
[11]
-
[11] M. P. Gualdani, A. JUngel and G. Toscani, A nonlinear fourth-order parabolic equation with non-homogeneous boundary conditions, SIAM J. Math. Anal., 37(6), 1761-1779, 2006.
-
(2006)
SIAM J. Math. Anal
, vol.37
, Issue.6
, pp. 1761-1779
-
-
Gualdani, M. P.1
JUngel, A.2
Toscani, G.3
-
12
-
-
32544439082
-
An algorithmic construction of entropies in higher-order nonlinear pdes
-
[12]
-
[12] A. JUngel and D. Matthes, An algorithmic construction of entropies in higher-order nonlinear pdes, Nonlinearity, 19, 633-659, 2006.
-
(2006)
Nonlinearity
, vol.19
, pp. 633-659
-
-
JUngel, A.1
Matthes, D.2
-
13
-
-
0034353705
-
Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems
-
[13]
-
[13] A. JUngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems, SIAM J. Math. Anal., 32, 760-777, 2000.
-
(2000)
SIAM J. Math. Anal
, vol.32
, pp. 760-777
-
-
JUngel, A.1
Pinnau, R.2
-
14
-
-
0035322533
-
A positivity-preserving numerical scheme for a nonlinearfourth-order parabolic equation
-
[14]
-
[14] A. Jungel and R. Pinnau, A positivity-preserving numerical scheme for a nonlinearfourth-order parabolic equation, SIAM J. Num. Anal., 39, 385-406, 2001.
-
(2001)
SIAM J. Num. Anal
, vol.39
, pp. 385-406
-
-
Jungel, A.1
Pinnau, R.2
-
15
-
-
0038407258
-
Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation
-
[15]
-
[15] A. Jungel and G. Toscani, Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation, Z. Angew. Math. Phys., 54, 377-386, 2003.
-
(2003)
Z. Angew. Math. Phys
, vol.54
, pp. 377-386
-
-
Jungel, A.1
Toscani, G.2
-
16
-
-
84968517521
-
Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators
-
[16]
-
[16] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal., 39, 42-56, 1980.
-
(1980)
J. Funct. Anal
, vol.39
, pp. 42-56
-
-
Rothaus, O. S.1
-
17
-
-
34250112428
-
Compact sets in the space Lp(0,T;B)
-
[17]
-
[17] J. Simon, Compact sets in the space Lp(0,T;B), Ann. Math. Pura Appl., 146, 65-96, 1987.
-
(1987)
Ann. Math. Pura Appl
, vol.146
, pp. 65-96
-
-
Simon, J.1
-
18
-
-
0000618729
-
Logarithmic Sobolev inequalities and hypercontractive estimates on the circle
-
[18]
-
[18] F. B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle,J. Funct. Anal., 37, 218-234, 1980.
-
(1980)
J. Funct. Anal
, vol.37
, pp. 218-234
-
-
Weissler, F. B.1
|