메뉴 건너뛰기




Volumn 2, Issue 2, 2006, Pages 288-291

Quantum mechanical calculations for benzene dimer energies: Present problems and future challenges

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33748528519     PISSN: 15499618     EISSN: None     Source Type: Journal    
DOI: 10.1021/ct0502357     Document Type: Article
Times cited : (68)

References (21)
  • 13
    • 0035982010 scopus 로고    scopus 로고
    • For a recent compilation of experimental sublimation enthalpies, see
    • For a recent compilation of experimental sublimation enthalpies, see Chickos, W. E.; Acree, W. E., Jr. J. Phys. Chem. Ref. Data 2002, 31, 537-698.
    • (2002) J. Phys. Chem. Ref. Data , vol.31 , pp. 537-698
    • Chickos, W.E.1    Acree Jr., W.E.2
  • 14
    • 33846216148 scopus 로고    scopus 로고
    • Why divide by two? This question may occur to readers unfamiliar with the bookkeeping of lattice energy. For simplicity, consider a cluster of N monatomic molecules. Each molecule interacts with all the others, so there are N(N, 1)/2 separate interactions, each of which contributes to the total cohesive energy of the cluster. If this energy is to be expressed in molar units, e.g, kJ mol-1, then the sum over the cluster has to be divided by N, the number of molecules in the cluster. For an extended crystal, where all molecules can be regarded as equivalent, the same result is obtained by choosing an arbitrary reference molecule, summing over the N, 1 interactions with the remaining molecules, and then dividing by 2. If the molecules in the crystal are not equivalent, e.g, if Z′ > 1 or in a cocrystal, then the matter becomes more complicated
    • -1, then the sum over the cluster has to be divided by N, the number of molecules in the cluster. For an extended crystal, where all molecules can be regarded as equivalent, the same result is obtained by choosing an arbitrary reference molecule, summing over the N - 1 interactions with the remaining molecules, and then dividing by 2. If the molecules in the crystal are not equivalent, e.g., if Z′ > 1 or in a cocrystal, then the matter becomes more complicated.
  • 19
    • 33846201859 scopus 로고    scopus 로고
    • Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T, Al-La
    • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; W. Gill, P. M.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  • 20
    • 33846259511 scopus 로고    scopus 로고
    • This information can be conveniently recovered from the Cambridge Structural Database (CSD, distributed by the Cambridge Crystallographic Data Centre, Cambridge, England , under the refcode BENZEN01
    • This information can be conveniently recovered from the Cambridge Structural Database (CSD), distributed by the Cambridge Crystallographic Data Centre, Cambridge, England (www.ccdc.cam.ac.uk), under the refcode BENZEN01.
  • 21
    • 33846231181 scopus 로고    scopus 로고
    • In the four Pixel calculations Table 2, the dispersion contribution to the binding energy is dominant and remains nearly constant. The largest energy changes occur in the repulsion contribution, which increases with the expansion of the basis set
    • In the four Pixel calculations (Table 2), the dispersion contribution to the binding energy is dominant and remains nearly constant. The largest energy changes occur in the repulsion contribution, which increases with the expansion of the basis set.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.