-
1
-
-
84898893412
-
Three small universal Turing machines
-
Margenstern M., and Rogozhin Y. (Eds), MCU, Springer, Chişinǎu, Moldova
-
Baiocchi C. Three small universal Turing machines. In: Margenstern M., and Rogozhin Y. (Eds). Machines, Computations, and Universality, Lecture Notes in Computer Science Vol. 2055 (2001), MCU, Springer, Chişinǎu, Moldova 1-10
-
(2001)
Machines, Computations, and Universality, Lecture Notes in Computer Science
, vol.2055
, pp. 1-10
-
-
Baiocchi, C.1
-
2
-
-
0010717002
-
Universality of tag systems with P = 2
-
Cocke J., and Minsky M. Universality of tag systems with P = 2. J. Assoc. Comput. Mach. 11 1 (1964) 15-20
-
(1964)
J. Assoc. Comput. Mach.
, vol.11
, Issue.1
, pp. 15-20
-
-
Cocke, J.1
Minsky, M.2
-
3
-
-
8744267587
-
Universality in elementary cellular automata
-
Cook M. Universality in elementary cellular automata. Complex Systems 15 1 (2004) 1-40
-
(2004)
Complex Systems
, vol.15
, Issue.1
, pp. 1-40
-
-
Cook, M.1
-
4
-
-
37849002529
-
-
G. Hermann, The uniform halting problem for generalized one state Turing machines, in: Proceedings, Ninth Annual Symposium on Switching and Automata Theory, IEEE Computer Society Press, Schenectady, New York, 1968, pp. 368-372.
-
-
-
-
5
-
-
0003620778
-
-
Addison-Wesley, Reading, MA
-
Hopcroft J.E., and Ullman J.D. Introduction to Automata Theory, Languages, and Computation (1979), Addison-Wesley, Reading, MA
-
(1979)
Introduction to Automata Theory, Languages, and Computation
-
-
Hopcroft, J.E.1
Ullman, J.D.2
-
7
-
-
0030284012
-
Small deterministic Turing machines
-
Kudlek M. Small deterministic Turing machines. Theoret. Comput. Sci. 168 2 (1996) 241-255
-
(1996)
Theoret. Comput. Sci.
, vol.168
, Issue.2
, pp. 241-255
-
-
Kudlek, M.1
-
8
-
-
84876907785
-
A universal Turing machine with 3 states and 9 symbols
-
Kuich W., Rozenberg G., and Salomaa A. (Eds), DLT, Springer, Vienna
-
Kudlek M., and Rogozhin Y. A universal Turing machine with 3 states and 9 symbols. In: Kuich W., Rozenberg G., and Salomaa A. (Eds). Developments in Language Theory, DLT 2001, Lecture Notes in Computer Science Vol. 2295 (2002), DLT, Springer, Vienna 311-318
-
(2002)
Developments in Language Theory, DLT 2001, Lecture Notes in Computer Science
, vol.2295
, pp. 311-318
-
-
Kudlek, M.1
Rogozhin, Y.2
-
9
-
-
33748579650
-
-
M. Minsky, Size and structure of universal Turing machines using tag systems, in: Recursive Function Theory, Symp. in Pure Mathematics, Vol. 5, American Mathematical Society, Providence, RI, 1962, pp. 229-238.
-
-
-
-
10
-
-
0038097288
-
Solvability of the halting problem for certain classes of Turing machines
-
Pavlotskaya L. Solvability of the halting problem for certain classes of Turing machines. Math. Notes (Springer) 13 6 (1973) 537-541
-
(1973)
Math. Notes (Springer)
, vol.13
, Issue.6
, pp. 537-541
-
-
Pavlotskaya, L.1
-
11
-
-
33748555277
-
-
L. Pavlotskaya, Dostatochnye uslovija razreshimosti problemy ostanovki dlja mashin T'juring, Problemi kibernetiki, Vol. 33, Moskva, Naukva, 1978, pp. 91-118 (Sufficient conditions for the halting problem decidability of Turing machines) (in Russian).
-
-
-
-
12
-
-
0030286377
-
Small universal Turing machines
-
Rogozhin Y. Small universal Turing machines. Theoret. Comput. Sci. 168 2 (1996) 215-240
-
(1996)
Theoret. Comput. Sci.
, vol.168
, Issue.2
, pp. 215-240
-
-
Rogozhin, Y.1
-
13
-
-
0001426220
-
A universal Turing machine with two internal states
-
Shannon C.E. A universal Turing machine with two internal states. Automata Stud. Ann. Math. Stud. 34 (1956) 157-165
-
(1956)
Automata Stud. Ann. Math. Stud.
, vol.34
, pp. 157-165
-
-
Shannon, C.E.1
-
15
-
-
0001900109
-
Machine models and simulations
-
van Leeuwen J. (Ed), Elsevier, Amsterdam (Chapter 1)
-
van Emde Boas P. Machine models and simulations. In: van Leeuwen J. (Ed). Handbook of Theoretical Computer Science Vol. A (1990), Elsevier, Amsterdam 1-66 (Chapter 1)
-
(1990)
Handbook of Theoretical Computer Science
, vol.A
, pp. 1-66
-
-
van Emde Boas, P.1
-
16
-
-
0039348965
-
5-symbol 8-state and 5-symbol 6-state universal Turing machines
-
Watanabe S. 5-symbol 8-state and 5-symbol 6-state universal Turing machines. J. Assoc. Comput. Mach. 8 4 (1961) 476-483
-
(1961)
J. Assoc. Comput. Mach.
, vol.8
, Issue.4
, pp. 476-483
-
-
Watanabe, S.1
|