메뉴 건너뛰기




Volumn 23, Issue 1, 2007, Pages 48-54

A grid-based approach for enterprise-scale data mining

Author keywords

Data mining; Grid computing; Parallel databases; Predictive modeling

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; ALGORITHMS; COMPUTATION THEORY; DATA MINING; DATA TRANSFER; DATABASE SYSTEMS; PARALLEL PROCESSING SYSTEMS; STATISTICAL METHODS;

EID: 33748453304     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2006.04.003     Document Type: Article
Times cited : (9)

References (27)
  • 2
    • 0036787181 scopus 로고    scopus 로고
    • Computational and data grids in large-scale science and engineering
    • Johnston W.E. Computational and data grids in large-scale science and engineering. Future Generation Computer Systems 8 (2002) 1085-1100
    • (2002) Future Generation Computer Systems , vol.8 , pp. 1085-1100
    • Johnston, W.E.1
  • 9
    • 0002522158 scopus 로고    scopus 로고
    • Meta learning in distributed data systems - issues and approaches
    • Kargupta H., and Chan P. (Eds), AAAI Press
    • Prodromides A., Chan P., and Stolfo S. Meta learning in distributed data systems - issues and approaches. In: Kargupta H., and Chan P. (Eds). Advances in Distributed Data Mining (2000), AAAI Press
    • (2000) Advances in Distributed Data Mining
    • Prodromides, A.1    Chan, P.2    Stolfo, S.3
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Giudici P., and Castelo R. Improving Markov chain Monte Carlo model search for data mining. Machine Learning 50 (2003) 127-158
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 14
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • Caragea D., Silvescu A., and Honavar V. A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. International Journal of Hybrid Intelligent Systems 1 (2004) 80-89
    • (2004) International Journal of Hybrid Intelligent Systems , vol.1 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 15
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with massive datasets
    • Moore A., and Lee M.S. Cached sufficient statistics for efficient machine learning with massive datasets. Journal of Artificial Intelligence Research 8 (1998) 67-91
    • (1998) Journal of Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.1    Lee, M.S.2
  • 16
    • 33748469732 scopus 로고    scopus 로고
    • R. Natarajan, E.P.D. Pednault, Using simulated pseudo data to speed up statistical predictive modeling from large data sets, in: Proceedings of the 1st SIAM Conference on Data Mining, Chicago IL, 2000
  • 17
    • 33748440589 scopus 로고    scopus 로고
    • N. Friedman, L. Getoor, Efficient learning using constrained sufficient statistics, in: Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics, 1999
  • 18
  • 20
    • 33748457706 scopus 로고    scopus 로고
    • R. Natarajan, E.P.D. Pednault, Segmented regression estimators for massive data sets, in: Proceedings of the 2nd SIAM Conference on Data Mining, Crystal City, VA, 2002
  • 21
    • 33751042942 scopus 로고    scopus 로고
    • A. Dorneich, E. Pednault, R. Natarajan, F. Tipu, Embedded predictive modeling in a parallel relational database, in: Proceedings of the 21st ACM Symposium on Applied Computing, Dijon, France, 2006
  • 22
    • 0032094478 scopus 로고    scopus 로고
    • M. Jaedicke, B. Mitschang, On parallel processing of aggregate and scalar function in object-relational DBMS, in: Proceedings of the ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA, 1998
  • 24
    • 0038181950 scopus 로고    scopus 로고
    • M. Rodriguez-Martinez, N. Roussopoulos, MOCHA: A self-extensible database middleware system for distributed data sources, in: Proceedings of the ACM SIGMOD International Conference for Distributed Data Sources, Dallas, TX, 2000, pp. 213-224
  • 25
    • 0008486362 scopus 로고    scopus 로고
    • Cache investment: Integrating query optimization and distributed data placement
    • Kossmann D., Franklin M.J., and Drasch G. Cache investment: Integrating query optimization and distributed data placement. ACM Transactions on Database Systems 25 (2000) 517-558
    • (2000) ACM Transactions on Database Systems , vol.25 , pp. 517-558
    • Kossmann, D.1    Franklin, M.J.2    Drasch, G.3
  • 26
    • 33748447685 scopus 로고    scopus 로고
    • The IBM DB2 XML Extender (2004). http://www.ibm.com/software/data/db2/extender/xmlext
    • (2004) The IBM DB2 XML Extender
  • 27
    • 26844469306 scopus 로고    scopus 로고
    • R. Sion, R. Natarajan, I. Narang, W. Li, T. Phan, XG: A data-driven computational grid for enterprise-scale mining, in: Proceedings of the 16th International Conference on Database and Expert Systems Applications, Copenhagen, Denmark, 2005


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.