-
2
-
-
85024423711
-
-
R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, ASME J. Basic Eng. (1961) 95-108.
-
-
-
-
3
-
-
0019660565
-
Exact finite dimension filter for certain diffusion with nonlinear drift
-
Beneš V.E. Exact finite dimension filter for certain diffusion with nonlinear drift. Stochastics 5 (1981) 65-92
-
(1981)
Stochastics
, vol.5
, pp. 65-92
-
-
Beneš, V.E.1
-
4
-
-
0001157746
-
On the differential equations satisfied by consitional probability densities of Markov processes, with applications
-
Kushner H.J. On the differential equations satisfied by consitional probability densities of Markov processes, with applications. J. Soc. Indust. Appl. Math. Ser. A Control 2 (1964) 106-119
-
(1964)
J. Soc. Indust. Appl. Math. Ser. A Control
, vol.2
, pp. 106-119
-
-
Kushner, H.J.1
-
5
-
-
84932847698
-
Approximations to optimal nonlinear filters
-
Kushner H.J. Approximations to optimal nonlinear filters. IEEE Trans. Automat. Control 5 (1967) 546-556
-
(1967)
IEEE Trans. Automat. Control
, vol.5
, pp. 546-556
-
-
Kushner, H.J.1
-
7
-
-
0021575303
-
Asymptotic analysis of the optimal filtering problem for one-dimensional diffusions measured in a low noise channel, part II
-
Katzur R., Bobrovsky B.Z., and Schuss Z. Asymptotic analysis of the optimal filtering problem for one-dimensional diffusions measured in a low noise channel, part II. SIAM. J. Appl. Math. 44 6 (1984) 1176-1191
-
(1984)
SIAM. J. Appl. Math.
, vol.44
, Issue.6
, pp. 1176-1191
-
-
Katzur, R.1
Bobrovsky, B.Z.2
Schuss, Z.3
-
8
-
-
0027580559
-
A novel approach to nonlinear and non-Gaussian Bayesian state estimation
-
Gordon N.J., Salmond D.J., and Smith A.E.M. A novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEEE Proc. F 140 2 (1993) 107-113
-
(1993)
IEEE Proc. F
, vol.140
, Issue.2
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.E.M.3
-
9
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
Arulampalam M.S., Maskell S., Gordon N., and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50 (2002) 174-188
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, pp. 174-188
-
-
Arulampalam, M.S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
11
-
-
0032244326
-
A uniform convergence theorem for the numerical solving of the nonlinear filtering problem
-
del Moral P. A uniform convergence theorem for the numerical solving of the nonlinear filtering problem. J. Appl. Probab. 35 (1998) 873-884
-
(1998)
J. Appl. Probab.
, vol.35
, pp. 873-884
-
-
del Moral, P.1
-
13
-
-
0003462953
-
-
Wiley, New York
-
Van-Trees H.L. Detection, Estimation, and Modulation Theory, Part I (1968), Wiley, New York
-
(1968)
Detection, Estimation, and Modulation Theory, Part I
-
-
Van-Trees, H.L.1
-
14
-
-
0037210328
-
Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops
-
Amblard P.O., Brossier J.M., and Moisan E. Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops. Signal Process. 83 1 (2003) 151-167
-
(2003)
Signal Process.
, vol.83
, Issue.1
, pp. 151-167
-
-
Amblard, P.O.1
Brossier, J.M.2
Moisan, E.3
-
15
-
-
0020089442
-
A singular perturbation method for the computation of the mean first passage time in a non linear filter
-
Bobrovsky B.Z., and Schuss Z. A singular perturbation method for the computation of the mean first passage time in a non linear filter. SIAM J. Appl. Math. 42 1 (1982) 174-187
-
(1982)
SIAM J. Appl. Math.
, vol.42
, Issue.1
, pp. 174-187
-
-
Bobrovsky, B.Z.1
Schuss, Z.2
-
16
-
-
33748307959
-
-
B.Z. Bobrovsky, Z. Schuss, Singular perturbation in filtering theory, IFAC Workshop on Singular Perturbations in Optimal Control, 1978, pp. 1439-1447.
-
-
-
|