-
1
-
-
0242376125
-
The nonlinear Schrödinger equation as both a PDE and a dynamical system
-
North-Holland, Amsterdam
-
Cai, D.; McLaughlin, D. W.; McLaughlin, K. T. R. The nonlinear Schrödinger equation as both a PDE and a dynamical system. Handbook of dynamical systems, Vol. 2, 599-675. North-Holland, Amsterdam, 2002.
-
(2002)
Handbook of Dynamical Systems, Vol. 2
, vol.2
, pp. 599-675
-
-
Cai, D.1
McLaughlin, D.W.2
McLaughlin, K.T.R.3
-
2
-
-
17944399485
-
A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation
-
Ceniceros, H.; Tian, F.-R.; Ceniceros, H. D.; Tian, F.-R. A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation. Phys. Lett. A 306 (2002), no. 1, 25-34.
-
(2002)
Phys. Lett. A
, vol.306
, Issue.1
, pp. 25-34
-
-
Ceniceros, H.1
Tian, F.-R.2
Ceniceros, H.D.3
Tian, F.-R.4
-
3
-
-
0033440723
-
Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory
-
Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (1999), no. 11, 1335-1425.
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.11
, pp. 1335-1425
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
5
-
-
1842665167
-
New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems
-
Deift, P.; Venakides, S.; Zhou, X. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notices 1997, no. 6, 286-299.
-
Internat. Math. Res. Notices
, vol.1997
, Issue.6
, pp. 286-299
-
-
Deift, P.1
Venakides, S.2
Zhou, X.3
-
6
-
-
0001525213
-
A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation
-
Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. (2) 137 (1993), no. 2, 295-368.
-
(1993)
Ann. of Math. (2)
, vol.137
, Issue.2
, pp. 295-368
-
-
Deift, P.1
Zhou, X.2
-
7
-
-
84990647031
-
Asymptotics for the Painlevé II equation
-
Deift, P.; Zhou, X. Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math. 48 (1995), no. 3, 277-337.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, Issue.3
, pp. 277-337
-
-
Deift, P.1
Zhou, X.2
-
8
-
-
0002412295
-
Geometry and modulation theory for the periodic nonlinear Schrödinger equation
-
The IMA Volumes in Mathematics and Its Applications, Springer, New York
-
Forest, M. G.; Lee, J. E. Geometry and modulation theory for the periodic nonlinear Schrödinger equation. Oscillation theory, computation, and methods of compensated compactness (Minneapolis, Minn., 1985), 35-69. The IMA Volumes in Mathematics and Its Applications, 2. Springer, New York, 1986.
-
(1986)
Oscillation Theory, Computation, and Methods of Compensated Compactness (Minneapolis, Minn., 1985)
, vol.2
, pp. 35-69
-
-
Forest, M.G.1
Lee, J.E.2
-
10
-
-
85009055469
-
-
Annals of Mathematics Studies, Princeton University Press, Princeton, N.J.
-
Kamvissis, S.; McLaughlin, K. T.-R.; Miller, P. D. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Annals of Mathematics Studies, 154. Princeton University Press, Princeton, N.J., 2003.
-
(2003)
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation
, pp. 154
-
-
Kamvissis, S.1
McLaughlin, K.T.-R.2
Miller, P.D.3
-
11
-
-
0002023137
-
On the semiclassical limit of the focusing nonlinear Schrödinger equation
-
Miller, P. D.; Kamvissis, S. On the semiclassical limit of the focusing nonlinear Schrödinger equation. Phys. Lett. A 247 (1998), no. 1-2, 75-86.
-
(1998)
Phys. Lett. A
, vol.247
, Issue.1-2
, pp. 75-86
-
-
Miller, P.D.1
Kamvissis, S.2
-
12
-
-
0039741902
-
The eigenvalue problem for the focusing nonlinear Schrödinger equation: New solvable cases
-
Tovbis, A.; Venakides, S. The eigenvalue problem for the focusing nonlinear Schrödinger equation: new solvable cases. Phys. D 146 (2000), no. 1-4, 150-164.
-
(2000)
Phys. D
, vol.146
, Issue.1-4
, pp. 150-164
-
-
Tovbis, A.1
Venakides, S.2
-
13
-
-
2942535891
-
On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation
-
Tovbis, A.; Venakides, S.; Zhou, X. On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Comm. Pure Appl. Math. 57 (2004), no. 7, 877-985.
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, Issue.7
, pp. 877-985
-
-
Tovbis, A.1
Venakides, S.2
Zhou, X.3
-
14
-
-
84990586440
-
The Korteweg-de Vries equation with small dispersion: Higher order Lax-Levermore theory
-
Venakides, S. The Korteweg-de Vries equation with small dispersion: higher order Lax-Levermore theory. Comm. Pure Appl. Math. 43 (1990), no. 3, 335-361.
-
(1990)
Comm. Pure Appl. Math.
, vol.43
, Issue.3
, pp. 335-361
-
-
Venakides, S.1
-
15
-
-
0002557939
-
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
-
Zakharov, V. E.; Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP 34 (1972), no. 1, 62-69;
-
(1972)
Soviet Physics JETP
, vol.34
, Issue.1
, pp. 62-69
-
-
Zakharov, V.E.1
Shabat, A.B.2
-
16
-
-
0000440099
-
-
translated from Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118-134.
-
(1971)
Ž. Èksper. Teoret. Fiz.
, vol.61
, Issue.1
, pp. 118-134
-
-
-
17
-
-
0040113212
-
2-Sobolev space bijectivity of the scattering and inverse scattering transforms
-
2-Sobolev space bijectivity of the scattering and inverse scattering transforms. Comm. Pure Appl. Math. 51 (1998), no. 7, 697-731.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.7
, pp. 697-731
-
-
Zhou, X.1
|