메뉴 건너뛰기




Volumn 32, Issue 1, 2007, Pages 12-23

Mining of mixed data with application to catalog marketing

Author keywords

Catalog marketing; Clustering; Data mining; Entropy; Similarity measure

Indexed keywords

ALGORITHMS; DATA REDUCTION; DATABASE SYSTEMS; ENTROPY; INFORMATION SCIENCE; NUMERICAL METHODS;

EID: 33748140221     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2005.11.017     Document Type: Article
Times cited : (74)

References (26)
  • 1
    • 0038494682 scopus 로고    scopus 로고
    • Barbara, D., Couto, J., & Li, Y. (2002). COOLCAT: An entropy-based algorithm for categorical clustering. In Proceedings of the eleventh international conference on Information and knowledge management (pp. 582-589).
  • 2
    • 33748125972 scopus 로고    scopus 로고
    • Biswas, G., Weinberg, J., & Fisher, H. h. (1995). ITERATE: A conceptual clustering algorithm for knowledge discovery in databases. In B. Braunschweig, & R. Day (Eds.), Artificial intelligence in the petroleum industry (pp. 111-139).
  • 3
    • 33748209347 scopus 로고    scopus 로고
    • Cheessman, P., & Stutz, J. (1995). Bayesian classification (AUTOCLASS): Theory and results. Advances in Knowledge Discovery and Data Mining.
  • 4
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations
    • Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics (1952) 493-509
    • (1952) Annals of Mathematical Statistics , pp. 493-509
    • Chernoff, H.1
  • 8
    • 33748127720 scopus 로고    scopus 로고
    • Ganti, V., Gehrke, J., & Ramakrishnan, R. (1999). CACTUS clustering categorical data using summaries. In Proceedings of the ACM-SIGKDD international conference on knowledge discovery and data mining (pp. 113-120).
  • 9
    • 33748194380 scopus 로고    scopus 로고
    • Gluck, M. A., & Corter, J. (1985). Information, uncertainty, and the utility of categories. In Proceedings of the seventh annual conference of the cognitive science society.
  • 10
    • 0001337675 scopus 로고
    • A new similarity index based on probability
    • Goodall D.W. A new similarity index based on probability. Biometrics 22 (1966) 882-907
    • (1966) Biometrics , vol.22 , pp. 882-907
    • Goodall, D.W.1
  • 11
    • 0032091595 scopus 로고    scopus 로고
    • Guha, S., Rastogi, R., & Shim, K. (1998). CURE: A clustering algorithm for large databases. In Proceedings of the ACM SIGMOD conference on management of data.
  • 12
    • 85175741012 scopus 로고    scopus 로고
    • Guha, S., Rastogi, R., & Shim, K. (1999). ROCK: A robust clustering algorithm for categorical attributes. In Proceedings of the 15th international conference on data engineering.
  • 13
    • 38149131021 scopus 로고    scopus 로고
    • Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). Clustering algorithms and validity measures. In Thirteenth international conference on scientific and statistical database management (pp. 3-22).
  • 16
    • 2942589031 scopus 로고    scopus 로고
    • Extending attribute-oriented induction algorithm for major values and numeric values
    • Hsu C.C. Extending attribute-oriented induction algorithm for major values and numeric values. Expert Systems with Applications 27 (2004) 187-202
    • (2004) Expert Systems with Applications , vol.27 , pp. 187-202
    • Hsu, C.C.1
  • 17
    • 33644899363 scopus 로고    scopus 로고
    • Hsu, C. C. (2006). Generalizing self-organizing map for categorical data. IEEE Transactions on Neural Networks, in press.
  • 18
    • 33748134455 scopus 로고    scopus 로고
    • Huang, Z. (1997). A fast clustering algorithm to cluster very large categorical data sets in data mining. In SIGMOD workshop on research issues on data mining and knowledge discovery.
  • 19
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowledge Discovery 2 3 (1998) 283-304
    • (1998) Data Mining Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 23
    • 33748135329 scopus 로고    scopus 로고
    • MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley symposium on mathematical statistics and probability (pp. 281-297).
  • 25
    • 33748167576 scopus 로고    scopus 로고
    • McKusick, K., & Thompson, K. (1990). COBWEB/3: A portable implementation. Technical Report FIA-90-6-18-2, NASA Ames Research Center.
  • 26
    • 33748149256 scopus 로고    scopus 로고
    • Murphy, P. M., & Aha, D. W. (1992). UCI repository of machine learning database. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.