-
1
-
-
84858944149
-
Approximate classification via earthmover metrics
-
A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and É. Tardos, Approximate classification via earthmover metrics, in Proc. SODA '04.
-
Proc. SODA '04
-
-
Archer, A.1
Fakcharoenphol, J.2
Harrelson, C.3
Krauthgamer, R.4
Talwar, K.5
Tardos, É.6
-
2
-
-
0000927271
-
An O(log k) approximate min-cut max-flow theorem and approximation algorithm
-
Y. Aumann and Y. Rabani, An O(log k) approximate min-cut max-flow theorem and approximation algorithm, SIAM J. Comput., 27(1):291-301, 1998.
-
(1998)
SIAM J. Comput.
, vol.27
, Issue.1
, pp. 291-301
-
-
Aumann, Y.1
Rabani, Y.2
-
3
-
-
33748096259
-
On approximating arbitrary metrics by tree metrics
-
Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proc. STOC '98.
-
Proc. STOC '98
-
-
Bartal, Y.1
-
4
-
-
51249171061
-
The metrical interpretation of superreflexivity in Banach spaces
-
J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., 56(2):222-230, 1986.
-
(1986)
Israel J. Math.
, vol.56
, Issue.2
, pp. 222-230
-
-
Bourgain, J.1
-
5
-
-
0034206424
-
An improved approximation algorithm for MULTIWAY CUT
-
G. Calinescu, H. J. Karloff, and Y. Rabani, An improved approximation algorithm for MULTIWAY CUT, J. Comput. and Syst. Sci., 60(3):564-574, 2000
-
(2000)
J. Comput. and Syst. Sci.
, vol.60
, Issue.3
, pp. 564-574
-
-
Calinescu, G.1
Karloff, H.J.2
Rabani, Y.3
-
6
-
-
33748112604
-
-
preliminary version
-
preliminary version in STOC '98.
-
STOC '98
-
-
-
7
-
-
18444387163
-
Approximation algorithms for the 0-EXTENSION problem
-
G. Calinescu, H. J. Karloff, and Y. Rabani, Approximation algorithms for the 0-EXTENSION problem, SIAM J. Comput., 34(2):358-372, 2004
-
(2004)
SIAM J. Comput.
, vol.34
, Issue.2
, pp. 358-372
-
-
Calinescu, G.1
Karloff, H.J.2
Rabani, Y.3
-
8
-
-
33748123234
-
-
preliminary version
-
preliminary version in SODA '01.
-
SODA '01
-
-
-
9
-
-
33748100058
-
-
private communication
-
M. Charikar, private communication, 2000.
-
(2000)
-
-
Charikar, M.1
-
10
-
-
33748113622
-
Approximation algorithms for the METRIC LABELING problem via a new linear programming formulation
-
to appear
-
C. Chekuri, S. Khanna, J. Naor, and L. Zosin, Approximation algorithms for the METRIC LABELING problem via a new linear programming formulation, to appear in SIAM J. on Discrete Math
-
SIAM J. on Discrete Math
-
-
Chekuri, C.1
Khanna, S.2
Naor, J.3
Zosin, L.4
-
11
-
-
33748125517
-
-
preliminary version
-
preliminary version in SODA '01.
-
SODA '01
-
-
-
12
-
-
17744366858
-
The hardness of METRIC LABELING
-
J. Chuzhoy and J. Naor, The hardness of METRIC LABELING, in Proc. FOCS '04, 108-114.
-
Proc. FOCS '04
, pp. 108-114
-
-
Chuzhoy, J.1
Naor, J.2
-
13
-
-
33748104732
-
An improved approximation algorithm for the 0-EXTENSION PROBLEM
-
J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, An improved approximation algorithm for the 0-EXTENSION PROBLEM, in Proc. SODA '03, 342-352.
-
Proc. SODA '03
, pp. 342-352
-
-
Fakcharoenphol, J.1
Harrelson, C.2
Rao, S.3
Talwar, K.4
-
14
-
-
0038784603
-
A tight bound on approximating arbitrary metrics by tree metrics
-
J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, in Proc. STOC '03, 448-455.
-
Proc. STOC '03
, pp. 448-455
-
-
Fakcharoenphol, J.1
Rao, S.2
Talwar, K.3
-
15
-
-
0033687759
-
A constant factor approximation algorithm for a class of classification problems
-
A. Gupta and E. Tardos, A constant factor approximation algorithm for a class of classification problems, in Proc. STOC '00, pages 652-658.
-
Proc. STOC '00
, pp. 652-658
-
-
Gupta, A.1
Tardos, E.2
-
16
-
-
51249179296
-
Extensions of Lipschitz maps into Banach space
-
W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Extensions of Lipschitz maps into Banach space, Israel J. Math., 54(2):129-138, 1986.
-
(1986)
Israel J. Math.
, vol.54
, Issue.2
, pp. 129-138
-
-
Johnson, W.B.1
Lindenstrauss, J.2
Schechtman, G.3
-
17
-
-
0041940683
-
Minimum 0-extension of graph metrics
-
A. V. Karzanov, Minimum 0-extension of graph metrics, Europ. J. Combinat., 19:71-101, 1998.
-
(1998)
Europ. J. Combinat.
, vol.19
, pp. 71-101
-
-
Karzanov, A.V.1
-
18
-
-
26844509176
-
Measured descent: A new embedding method for finite metrics
-
R. Krauthgamer, J. Lee, M. Mendel, and A. Naor, "Measured Descent: A New Embedding Method For Finite Metrics," Geometric and Functional Analysis 15 (4), 839-858, 2005.
-
(2005)
Geometric and Functional Analysis
, vol.15
, Issue.4
, pp. 839-858
-
-
Krauthgamer, R.1
Lee, J.2
Mendel, M.3
Naor, A.4
-
19
-
-
33748116341
-
-
A preliminary version appeared
-
A preliminary version appeared in FOCS 2004.
-
FOCS 2004
-
-
-
20
-
-
33748586226
-
Nonembeddability theorems via Fourier analysis
-
S. Khot and A. Naor, Nonembeddability theorems via Fourier analysis, in Proc. FOCS '05.
-
Proc. FOCS '05
-
-
Khot, S.1
Naor, A.2
-
21
-
-
1842545358
-
Approximation algorithms for classification problems with pairwise relationships: METRIC LABELING and Markov random fields
-
J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise relationships: METRIC LABELING and Markov random fields, J. Assoc. Comput. Mach., 49:616-639, 2002
-
(2002)
J. Assoc. Comput. Mach.
, vol.49
, pp. 616-639
-
-
Kleinberg, J.1
Tardos, E.2
-
22
-
-
33748096088
-
-
preliminary version
-
preliminary version in FOCS '99.
-
FOCS '99
-
-
-
23
-
-
15544369683
-
Extending Lipschitz functions via random metric partitions
-
J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Math. Invent., 160(1): 59-95, 2005.
-
(2005)
Math. Invent.
, vol.160
, Issue.1
, pp. 59-95
-
-
Lee, J.R.1
Naor, A.2
-
24
-
-
0000652415
-
The geometry of graphs and some of its algorithmic applications
-
N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15(2):215-245, 1995
-
(1995)
Combinatorica
, vol.15
, Issue.2
, pp. 215-245
-
-
Linial, N.1
London, E.2
Rabinovich, Y.3
-
25
-
-
33748125516
-
-
preliminary version
-
preliminary version in FOCS '94.
-
FOCS '94
-
-
|